/

Все о конденсаторах для начинающих

Типы конденсаторов

Конденсатор – один из самых распространённых радиоэлементов. Роль конденсатора в электронной схеме заключается в накоплении электрического заряда, разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и многое другое.

Конструктивно конденсатор состоит из двух проводящих обкладок, изолированных диэлектриком. В зависимости от конструкции и назначения конденсатора диэлектриком может служить воздух, бумага, керамика, слюда.

Основными параметрами конденсаторов являются:

Номинальная ёмкость. Ёмкость измеряют в Фарадах (Ф). Ёмкость в 1 Фараду очень велика. К примеру, земной шар имеет ёмкость менее 1 Ф, а точнее около 710 мкф. Правда, тут надо понимать, что физики любят аналогии. Говоря про электрическую ёмкость земного шара, они имеют ввиду, что в качестве примера взят металлический шар размером с планету Земля и являющийся уединённым проводником. Это всего лишь аналогия. В технике существует электронный компонент, который обладает ёмкостью более 1 Фарады – это ионистор.

В основном, в электронике и радиотехнике используются конденсаторы с ёмкостью равной миллионной доле фарады – микрофарада (1мкФ = 0,000001 Ф). Также находят применение конденсаторы с ёмкостями исчисляемыми десятками – сотнями нанофарад (1нФ = 0,000000001 Ф) и пикофарад (1пФ = 0,000000000001 Ф). Номинальную ёмкость указывают на корпусе конденсатора.

Чтобы не запутаться в сокращениях (мкФ, нФ, пФ), и научиться переводить микрофарады в пикофарады, а нанофарады в микрофарады необходимо знать о сокращённой записи численных величин.

Номинальное напряжение. Это напряжение, при котором конденсатор выполняет свои функции. При превышении допустимого значения конденсатор будет пробит, то есть, превратится в обычный проводник. Диапазон допустимых значений рабочих напряжений конденсаторов лежит в пределах от нескольких вольт до единиц киловольт (1 киловольт – 1 000 вольт). Номинальное напряжение маркируют на корпусе конденсатора.

Допуск. Также как у резисторов и у конденсаторов есть допустимое отклонение величины его реальной ёмкости от той, что указана на его корпусе. Допуск обозначается в процентах. Допуск у конденсаторов может достигать 20 – 30%. В технике, где требуется особая точность номинальных значений ёмкости, применяются конденсаторы с малым допуском (1% и менее).

Три указанных параметра являются основными. Знание этих параметров достаточно, чтобы самостоятельно подбирать конденсаторы для изготовления самоделок и ремонта электроники.

Изображается конденсатор на принципиальных схемах так, как показано на рисунке.

Типы конденсаторов

Кроме обычных существуют ещё и электролитические конденсаторы. Емкость их намного больше, чем у обычных, следовательно, габариты также существенно больше. Отличительная особенность электролитических конденсаторов – полярность. Если обычные конденсаторы можно впаивать в схему не беспокоясь о полярности прикладываемого к конденсатору напряжения, то электролитический конденсатор необходимо включать в схему строго в соответствии с полярностью напряжения. У электролитических конденсаторов один вывод плюсовой, другой минусовой.

Обозначение электролитического конденсатора на схемах.

Также широкое применение получили подстроечные конденсаторы. Подстроечные конденсаторы необходимы в тех случаях, когда требуется точная подстройка ёмкости в электронной схеме. В таких конденсаторах подстройку ёмкости производят один раз или очень редко.

Наряду с подстроечными конденсаторами существуют и конденсаторы переменной ёмкости. В отличие от подстроечных, переменные конденсаторы служат для частой подстройки ёмкости. В простом (не цифровом) приёмнике настройка на радиостанцию как раз и осуществляется с помощью конденсатора переменной ёмкости.

Свойства конденсатора

Конденсатор не пропускает постоянный ток и является для него изолятором.

Для переменного тока конденсатор не является преградой. Сопротивление конденсатора (ёмкостное сопротивление) переменному току уменьшается с увеличением его ёмкости и частоты тока, и наоборот, увеличивается с уменьшением его ёмкости и частоты тока.

Свойство конденсатора оказывать разное сопротивление переменному току нашло широкое применение. Конденсаторы используют для фильтрации, отделения одних частот от других, отделения переменной составляющей от постоянной…

Вот так выглядят конденсаторы постоянной ёмкости.

Электролитический конденсатор. Длинный вывод – плюсовой, короткий – минусовой.

Планарный электролитический конденсатор. На корпусе указана номинальная ёмкость22 мкФ (22), номинальное напряжение16 Вольт (16V). Видно, что емкость обозначена только цифрами. Ёмкость электролитических конденсаторов указывается в микрофарадах.

Со стороны отрицательного вывода конденсатора на верхней части корпуса чёрный полукруг.

Определение

Слово конденсатор происходит от латинского «condensatio», что переводится как «накопление». В физике этот термин употребляется для описания целой ниши электротехнических изделий, назначение которых работать как накопитель энергии. Количество накопленной энергии зависит от ёмкости и квадрата напряжения на его обкладках, поделенное на 2. При этом ток через него протекает только в процессе заряда. Но обо всем по порядку.

E=(CU 2 )/2

Если сказать по-простому, то конденсатор – это устройство способное накапливать энергию в электрическом поле. В простейшем варианте состоит из двух проводников (обкладок), разделённых диэлектриком. На рисунке ниже вы видите упрощенную схему внешнего устройства плоского конденсатора. Условное обозначение на схеме представляет собой 2 черты высотой в 8 мм, на расстоянии в 1,5 мм друг от друга.

Принцип работы

Теперь, когда мы знаем, как обозначается данный элемент на схемах, нужно рассмотреть принцип работы конденсатора. Когда обкладки конденсатора подключают к источнику питания, электрические заряды от положительного и отрицательного зажима ИП устремляются к обкладкам, скапливаясь на них.

Электрический ток прерывается после заряда конденсатора до номинальной ёмкости, так как между обкладками находится слой диэлектрика он не может протекать постоянно. Когда источник питания отключат, на конденсаторе останутся заряды, а значит и останется напряжение на его выводах.

Заряды, скопившиеся на каждой из обкладок, противоположны. Соответственно та обкладка, что была подключена к плюсовому выводу источника питания – заряжена положительно, а та, что к минусовому – отрицательно. Принцип работы этого изделия основан на притяжении разноименных зарядов в электрической цепи.

Простыми словами конденсатор сохранит ту энергию, которая была передана от источника питания – в этом и кроется его назначение. Однако на практике есть разнообразные потери и утечки.

Интересно! Лейденская банка – это прообраз современных конденсаторов, родившийся на свет в 1745 году. Это устройство было способно накапливать энергию и извлекать искры при замыкании его обкладок. Внешний вид и конструкцию вы видите ниже.

Читайте также:  Как построить вигвам своими руками

А на рисунке ниже вы видите конструкцию простейшего плоского конденсатора – две обкладки, разделенные диэлектриком:

Так как ёмкость прямо пропорциональна площади обкладок и обратно пропорциональна расстоянию между ними – то чтобы увеличить ёмкость, инженеры разработали ряд других форм конденсаторов. Например, свёрнутые в спираль обкладки – так их площадь становилась во много раз больше при тех же габаритных размерах, а также цилиндрические и сферические решения.

Один из законов коммутации гласит, что напряжение на обкладках конденсатора не может изменится скачком, что и иллюстрирует следующая миниатюра.

Классификация конденсаторов может происходить по различным критериям.

По постоянству ёмкости:

  • Постоянные.
  • Переменные. Их ёмкость может изменяться либо вручную оператором (пользователем) устройства, либо под воздействием напряжения (как в варикапах и варикондах).

По полярности прикладываемого напряжения:

  • Неполярные – могут работать в цепях переменного тока.
  • Полярные – при подключении напряжения неправильной полярности выходят из строя.

В зависимости от того, где используются эти компоненты, различают разные варианты по материалу:

  • Бумажные и металлобумажные – это привычные многим, распространённые в советское время конденсаторы в виде прямоугольных кирпичиков с маркировкой наподобие «МБГЧ». Внешний вид этого вида конденсаторов вы видите ниже. Они неполярные.
  • Керамические – ими часто фильтруют высокочастотные помехи, а относительная диэлектрическая проницаемость позволяет делать многослойные компоненты с ёмкостью сопоставимой электролитам (дорого), не чувствительны к полярности.
  • Плёночные – распространены в виде коричневых подушечек, недорогие, используются повсеместно. Характерны малым током утечки, небольшой ёмкостью, высоким рабочим напряжением и нечувствительностью к полярности приложенного напряжения.
  • С воздушным диэлектриком. Лучший пример такого элемента – подстроечный конденсатор резонансного контура из радиоприёмника, ёмкость таких элементов невелика, но удобно реализовать её изменение.
  • Электролитические – это элементы в виде бочонков, их устанавливают чаще всего в качестве фильтра сетевых пульсаций в БП. Конструкция и принцип действия позволяют получить большую ёмкость при небольших размерах, но со временем могут высыхать, терять ёмкость или вздуваться. Как выглядят в исправном состоянии эти изделия вы видите ниже. В качестве диэлектрика используют тонкий слой оксида металла. Если в БП используют конденсаторы с диэлектриком из AL2O3 – т.н. «алюминиевые электролиты», то для работы в высокочастотных цепях – используют танталовые (Ta25 — они также относятся к электролитам) конденсаторы, потому что у них меньший ток утечки, большая устойчивость к внешним воздействиям в отличие от предыдущих, алюминиевых.
  • Полимерные – способны выдерживать большие импульсные токи, работать при низких температурах

Основные технические характеристики

Если вы ремонтируете или разрабатываете электронное устройство, вам понадобится подбирать подходящий конденсатор для замены вышедшего из строя. А для этого нужно ознакомиться с основными техническими характеристиками конденсатора, от которых зависит его работа в электрической цепи.

Номинальная емкость. Характеризует основное назначение компонента — какой заряд он может запасать. Основная характеристика измеряется в фарадах [Ф]. Однако такая единица измерения слишком большая, поэтому используют доли:

  • Милифарады, мФ – 0, 001 Ф (10 -3 );
  • Микрофарады, мкФ – 0, 000 001 Ф (10 -6 );
  • Нанофарады, нФ – 0, 000 000 001 Ф (10 -9 );
  • Пикофарады, пФ – 0, 000 000 000 001 Ф (10 -12 ).

Номинальное напряжение — это такое напряжение, до которого конденсатор может гарантировано работать в нормальном режиме. При превышении этого значения с большой долей вероятности происходит пробой диэлектрика. Может быть от единиц вольт (для электролитов) и до тысяч вольт (плёнка и керамика). При ремонте эта величина должна быть не ниже, чем у вышедшего из строя, выше – можно!

Допуск отклонения — насколько реальная ёмкость может отличаться от заявленной номинальной. Может достигать 20-30%, но есть и высокоточные модели с допуском до 1% — для применения в цепях, где требуется особая точность.

Температурный коэффициент емкости — этот параметр важен для электролитов. У алюминиевых конденсаторов при понижении температуры понижается ёмкость и увеличивается удельное электрическое сопротивление (в англ. ESR)

ESR – эквивалентное последовательное сопротивление, также важен для электролитов. Простым языком – чем он больше, тем хуже. У вздувшихся кондёров ESR повышается.

В таблице ниже вы видите допустимые значения ESR для различных номинальных емкостей и напряжений.

Где и для чего применяются

Всё же ответим на вопрос «для чего предназначен конденсатор?» с практической точки зрения. Для этого рассмотрим несколько схем.

Самое широкое применение электролитические конденсаторы нашли в качестве уже не раз упомянутого фильтра сетевых пульсаций в блоках питания. На схеме ниже изображено, где именно устанавливается электролит. Чем больше нагрузка – тем большая ёмкость электролита нужна для сглаживания пульсаций.

Следующее место, где применяются конденсаторы – это фильтры высоких и низких частот. Ниже на схеме приведены типовые включения. Таким образом в акустических системах разводят басы, средние и высокие частоты по динамикам без применения активных компонентов.

Балластные блоки питания часто используются для зарядки небольших аккумуляторов и питания маломощных устройств, таких как дешевые светодиодные лампочки, радиоприёмники и прочие. Плёночный конденсатор устанавливается последовательно с питающим устройством, ограничивая ток за счёт своего реактивного сопротивления – в этом и заключается принцип работы такой простой схемы.

Снабберы – это устройства, предназначенные для защиты полупроводниковых ключей и контактов реле от нагрузок, возникающих при коммутации. В современных импульсных высокочастотных БП нашли применение снабберы из резистора и конденсатора, таким образом улучшаются основные параметры в цепи и снижаются нагрузки на ключи, как и потери мощности на его нагрев. Принцип действия снаббера состоит в замедлении фронтов роста и спада напряжения на ключе за счет использования постоянной времени заряда ёмкости.

Заключение

Мы рассмотрели, что такое конденсатор, как он устроен и какую функцию выполняет. Для более глубокого изучения вам нужно плотно ознакомится с тем, какие бывают виды конденсаторов и их практических особенностях работы в различных цепях и применениях. Так, например, в случаях, когда требуется особая точность в работе и надежность применяют low-ESR электролиты или танталовые, тогда как в фильтр на выпрямителе особой разницы нет, что ставить.

Напоследок рекомендуем просмотреть полезные видео по теме статьи:

Читайте также:  Сгоны муфты резьбы контргайки

Также читают:

Конденсаторы выполняют множество полезных функций в схемах электронных устройств, несмотря на их простую конструкцию. Если разобрать до деталей несколько радиоэлектронных устройств, и сосчитать их, то окажется, что количество, рассматриваемых в данной статье элементов, превысит количество других отдельных радиоэлектронных приборов, в том числе и резисторов. Ввиду такого обстоятельства, нам следует уделить особое внимание конструкции, устройству и принципу работы конденсаторов.

Принцип работы конденсатора

Для большего понимания принципа работы конденсатора рассмотрим его конструкцию. Простейший конденсатор состоит из двух металлических пластин, называемых обкладками. Между обкладками расположен диэлектрик, то есть веществом, которое практически не пропускает электрический ток. Обкладки, как правило, имеют одинаковые геометрические размеры (квадрат, прямоугольник, круг) и равны по площади. Пластинки выполняются из алюминия, меди или драгоценных металлов. Наличие в составе обкладок драгоценных металлов вызывает повышенную охоту на радиорынках за советскими образцами данного радиоэлектронного элемента.

В качестве диэлектрика, расположенного между пластинами, применяют сухую бумагу, керамику, фарфор, воздух и т.п.

Принцип работы конденсатора состоит в следующем. Если одну пластину подключить к плюсу источника электрического тока, а втору – к минусу, то обе пластины зарядятся разноименными зарядами. Заряды будут продолжать удерживаться на обкладках даже после отсоединения источника питания. Это поясняется тем, что заряды разных знаков («+» и «-») стремятся притянуться друг к другу. Однако этому препятствует диэлектрик (материал, не проводящий заряды), расположенный на их пути. Поэтому заряды, распределенные по всей площади обкладок, остаются на своих местах и удерживаются силами взаимного притяжения.

Поляризация диэлектрика

Такое явление называется накоплением электрических зарядов. А конденсатор называют накопителем электрического поля, так как вокруг каждого заряд действует электрическое поле, под действием которого диэлектрик поляризуется, то есть молекулы его становятся полярными – имеют четко выраженные положительный и отрицательный полюса. Полюса молекул непроводящего вещества ориентированы вдоль линий электрического поля, созданного зарядами, расположенными на обкладках. Причем отрицательный полюс молекулы направлен к положительной пластинке, а положительный – к отрицательной.

Способность накапливать электрические заряды характеризуется емкостью конденсатора, отсюда происходит обозначение его на чертежах электрических схем C ( англ. capacitorнакопитель). Аналогично емкости сосуда – чем больше емкость сосуда, тем больше в нем помещается жидкости.

Емкость конденсатора относится к главному параметру и измеряется в фарадах [Ф], названная в честь выдающегося английского физика Майкла Фарадея.

Следует обратить внимание: правильно говорить не «один фарад», а «одна фарада».

Емкостью в одну фараду обладает конденсатор, который накапливает заряд, величиной в один кулон, если приложит к пластинкам напряжение один вольт.

Ранее часто можно было услышать такое утверждение, что емкость в 1 Ф – это очень много – почти емкость нашей планеты. Однако сейчас, с появлением суперконденсаторов так больше не говорят, поскольку емкость последних достигает сотни фарад. Тем не менее в большинстве электронных схем используют накопители меньшей C – пикофарады, нанофарады и микрофарады.

Расчет емкости конденсатора

Расчет емкости конденсаторов довольно прост. Она определяется тремя параметрами: площадью пластины S, расстоянием между пластинами d и типом диэлектрика ε:

Физический смысл данной формулы следующий: чем больше площадь обкладок, тем больше зарядов на ней может расположиться (накопиться); чем больше расстояние между пластинами и соответственно между зарядами, тем меньшая сила их взаимного притяжения – тем слабее они удерживаются на обкладках, поэтому зарядам легче покинуть обкладки, что приводит к снижению их числа, а следовательно и уменьшению емкости накопителя электрического поля.

Диэлектрическая проницаемость ε показывает, во сколько раз заряд конденсатора с данным диэлектриком превосходит заряд аналогичного накопителя, если между его пластинками той же площади и находящихся на таком же расстоянии вакуум. Для воздуха ε равна единице, то есть практически ничем не отличается от вакуума. Сухая бумага обладает диэлектрической проницаемостью в два раза больше воздуха; фарфор – в четыре с половиной раза ε = 4,5. Конденсаторная керамика имеет ε = 10..200 единиц.

Отсюда вытекает важный вывод: чтобы получить максимальную емкость при сохранении прежних геометрических размеров, следует применять диэлектрик с максимальной диэлектрической проницаемостью. Поэтому в широко распространённых плоских конденсаторах используют керамику.

Конденсатор в цепи постоянного и переменного тока

Поскольку между обкладками конденсатора находится диэлектрик, то электрический ток от одной пластинки к другой протекать не может, следовательно, образуется разрыв электрической цепи для постоянного и для переменного тока. Поэтому уверенно можем сказать, что конденсатор не пропускает постоянный ток! Переменный ток он также не пропускает, однако переменный ток постоянно перезаряжает накопитель, что создает картину, будь-то переменный тока проходит сквозь обкладки конденсатора.

Если к обкладкам разряженного конденсатора приложить постоянное напряжение, то в цепи начнет протекать электрический ток. По мере его заряда ток будет снижаться и при равности напряжений на пластинках и источника питания, ток перестанет протекать – образуется как бы разрыв электрической цепи.

Конденсаторы постоянной емкости

Емкость таких конденсаторов не предусмотрено изменять в процессе эксплуатации радиоэлектронной аппаратуры. Они отличаются широчайшим разнообразием и геометрическими размерами – от спичечной головки до огромных шкафов и находят наибольшее применение в печатных платах электронных устройств. Самые распространенные экземпляры показаны на фото.

Конденсаторы переменной емкости КПЕ

Для изменения емкости отдельного узла электрической цепи непосредственно в процессе эксплуатации электронного устройства применяют конденсаторы переменной емкости (КПЕ). Главным образом КПЕ использовались в приемниках старого образца для настройки колебательного контура на резонансную частоту радиостанции. Однако сейчас вместо КПЕ применяют варикапы – полупроводниковые диоды, емкость которых определяется величиной подведенного обратного напряжения. Теперь достаточно изменить напряжение, подаваемое на варикап, чтобы изменить емкость последнего, а результате и частоту колебательного контура.

Как правило, КПЕ состоит из ряда параллельно расположенных металлических пластин, разделенных воздухом, поэтому габариты их весьма значительны. Варикапы, напротив – имеют гораздо меньшие габариты, потому и заменили КПЕ.

Подстроечные конденсаторы

Подстроечные конденсаторы используются в узлах окончательной настройки радиоэлектронной аппаратуры. Чаще всего они встречаются в различного рода колебательных контурах или в устройствах, связанных с формированием частоты; в измерительных приборах. Также можно найти их в щупах цифровых осциллографов. Там они используются для устранения собственной емкости измерительных щупов, что позволяет максимально исключить погрешности при выполнении измерений высокочастотных сигналов.

Электролитические конденсаторы

Главным отличием и преимуществом электролитических конденсаторов является большая емкость при малых габаритах. Благодаря такому свойству они широко используются в качестве электрических фильтров для сглаживания выпрямленного напряжения, что делает их неотъемлемой частью любого блока питания.

Читайте также:  Костюмы для мальчиков из бросового материала

Конструктивно электролитический конденсатор из алюминиевой фольги, которая служит одной из обкладок. Фольга смотана в рулон в виде цилиндра, что позволяет увеличить активную площадь обкладки. На фольгу наносится оксидный слой, который является диэлектриком. Второй обкладкой служит электролит или слой полупроводника. По этой причине электролитические конденсаторы являются полярными (значительно реже применяются и неполярные), то есть необходимо соблюдать полярность при включении их в цепь. В противном случае он выйдет из строя, чаще всего – взорвется. Поэтому следует быть крайне внимательным при включении такого радиоэлектронного элемента в электрическую цепь, что часто забывают делать при замене данного компонента.

Отрицательный вывод нового электролитического конденсатора короче положительного, а на корпусе рядом с ним наносится соответствующий знак – минус. В советской маркировке напротив, маркируется положительный вывод, со стороны которого на корпус наносится знак «+».

Также на корпусах электролитических конденсаторов в обязательном порядке присутствуют значения трех основных параметров: номинальное значение емкости, максимальное допустимое напряжение и максимальная рабочая температура.

Если с емкостью и допустимой температурой все понятно, то особое внимание следует направить на напряжение.

На электролитический конденсатор нельзя подавать напряжение, величина которого больше, чем указано на корпусе. В противном случае он взорвется. Большинство разработчиков электронной аппаратуры советуют не превышать напряжение на пластинках больше 80 % от допустимого значения.

Обозначение конденсаторов в схемах

На чертежах электрических схем обозначение конденсаторов строго стандартизировано. Однако данный радиоэлектронный элемент можно всегда узнать в схеме по двум параллельным, рядом расположенным вертикальным черточкам. Две вертикальные лини обозначают две обкладки. Эти черточки подписываются латинской буквой C, рядом с которой указывается порядковый номер элемента в схеме, а ниже или сбоку указывается значение емкости в микрофарадах или пикофарадах.

Маркировка конденсаторов

По мере развития электроники развивается и элементная база. Поскольку многие страны производят собственные радиоэлектронные элементы, то и маркировка их отличается от маркировки радиоэлектронных элементов других стран. Поэтому на первых этапах промышленного производства электроники применялось много разнообразных типов маркировки, однако стремление к унификации привело к более-менее ее упорядочению. Это позволило привести и маркировку конденсаторов к общим правилам. А преимущество здесь очевидное – радиоэлектронному элементу, произведенному в одной стране теперь можно довольно просто подобрать аналог производства другой страны. Идеально было бы свести все типы обозначений и маркировки привести к единому типу, что практически полностью уже выполнено.

Однако до сих пор широкий оборот имеют советские конденсаторы, отличающиеся небольшим, но разнообразием маркировки. В советской маркировке было задействовано все – цифры, буквы и цвета. Причем на корпуса элементов наносились как цифры с буквами, так и цвета, цифры и буквы. Цифры обозначают значение, буквы – единицы измерения.

Более распространенный тип маркировки состоит из цифр, которые обозначают емкость в пикофарадах, не путать с фарадами! Всегда нужно помнить, что в отличие от резисторов, маркировка которых выполняется в омах, базовой величиной размерности независимо от способа маркировки являются пикофарады (если цифры отделяются запятой, — то микрофарады). В общем, отсчет емкости начинается с пикофарад.

Также, ранее применялась исключительно цветовая маркировка – сплошной цвет с цветной точкой. Определить параметры можно только, воспользовавшись справочником.

Рассмотренные выше типы маркировки постепенно выходят из обихода, однако о них всегда помнят специалисты, выполняющие ремонт советской аппаратуры, в которой радиоэлементы имеют «старое» обозначение.

Наиболее удачным и совершенным способом обозначения электронных элементов является цифровое кодирование. Цифровое кодирование конденсаторов, как и резисторов, предполагает использование всего трех цифр. Такой подход позволяет реализовать множество комбинаций. Две цифры, расположенные слева обозначают мантису, то есть значащее число, а последняя – третья цифра показывает, сколько нулей нужно прибавить к двум предыдущим цифрам. Например, если на корпусе накопителя указано 153, то емкость его равна 15×10 3 = 15000 пФ = 15 нФ = 0,015 мкФ.

Помимо емкости накопители характеризуются еще рядом основных параметров, которые рассмотрены далее.

Маркировка SMD конденсаторов

Маркировка SMD конденсаторов может наноситься на корпус в виде цифрового кодирования, но в преобладающем большинство – это несколько запутанная шифровка, состоящая из одной или двух букв латинского алфавита. Если букв две – то первая обозначает производителя, что нас интересует в меньшей степени. А вот вторая или единственная буква обозначает мантису, аналогично, как и при цифровом кодировании. Оставшаяся цифра показывает количество нулей после мантисы. Расшифровать цифровое значение буквы можно с помощью таблицы, приведенной ниже.

SMD накопители с аналогичными характеристиками также отличаются размерами. Ряд стандартных размеров приведен в таблице и на рисунке, приведенных ниже. Особенно важно учитывать размеры радиоэлектронных элементов при проектировании печатных плат.

Маркировка электролитических SMD конденсаторов практически ничем не отличается от выводных аналогов. Отрицательная контактная площадка обозначается черной меткой на плоской стороне корпуса со стороны соответствующей контактной площадки. Также указываются допустимое напряжение в вольтах и емкость в микрофарадах.

Довольно часто встречаются корпуса, на которых отсутствуют какие-либо обозначения. Здесь может выручить только измеритель емкости.

Последовательное соединение конденсаторов

Последовательно соединение конденсаторов позволяет подать на их обкладки большее напряжение, чем на отдельный накопитель. Напряжение на пластинках распределяется в зависимости от емкости элемента.

Если два накопителя обладают одинаковой емкостью, то подведенное напряжение распределяется поровну между ними. Однако суммарная емкость будет в два раза меньше отдельного накопителя.

В общем случае, следует помнить такое правило: при последовательном соединении конденсаторов вместе они способны выдержать большее напряжение, но за это приходится расплачиваться снижением емкости.

Параллельное соединение конденсаторов

Такой способ соединения наиболее распространен в практическом применении, поскольку не всегда хватает емкости одного накопителя особенно в электрических фильтрах качественных блоков питания. Параллельное соединение конденсаторов реализует суммирование емкостей отдельных накопителей. Это довольно просто запомнить, опираясь на приведенную выше формулу, из которой видно, что с увеличением площади пластин повышается емкость.

Поэтому при параллельном соединении конденсаторов происходит как бы увеличение площади обкладок, благодаря чему они способны накопить большее число электрических зарядов.

Основные параметры и номиналы конденсаторов рассмотрены здесь.

Оцените статью
Добавить комментарий