/

Виды реакторов в электроэнергетике

Современные автоматические выключатели ликвидируют токи коротких замыканий с минимально возможной выдержкой времени. Но, они не могут противостоять действию электродинамических сил, которые развиваются в первоначальный момент аварии. Для ликвидации их ударного проявления используются другие технические решения, основанные на работе реакторов.

Термин «Реактор» используется для обозначения устройств, работающих за счет проявления сил различных реакций, когда создается ответное воздействие на протекание какого-то определенного процесса, например, биологического, химического, электрического. механического…

Если совершается какое-то действие (обозначаемое корнем слова «акция»), то техническое устройство контролирует этот процесс и осуществляет противодействие его развитию (определяется предлогом «ре»). Название «Реактор» обозначается термином, состоящим из этого корня и предлога. А его окончание завершает определение технического устройства.

Наиболее широко используются сухие реакторы в сетях 6 и 10 кВ. Они выполняются в виде обмотки из изолированного провода, закрепленной на бетонных колоннах. Монтируются с вертикальным, горизонтальным или ступенчатым расположением фаз, в отдельных камерах распределительного устройства. В сетях более высоких напряжений применяются реакторы с масляной изоляцией, с каркасом стержневой или тороидальной формы из изоляционного материала и стальным баком.

Реакторы различают: по исполнению — одинарные и сдвоенные, по месту включения — секционные и линейные, по характеристикам — с линейной или нелинейной характеристикой, управляемые и неуправляемые. Сухие бетонные реакторы относятся к неуправляемым реакторам с линейной характеристикой.

Виды реакторов в энергетике

В высоковольтных электрических системах реакторы работают на принципе контроля и ограничения аварийных токов, стихийно возникающих на оборудовании схемы.

По назначению конструкции они подразделяются на два вида:

1. уменьшающие величины токов коротких замыканий — токоограничивающие;

2. снижающих возникающую электрическую дугу — дугогасящие.

Первый вид электротехнических аппаратов создается для устранения действия ударного тока, образуемого при возникновении короткого замыкания.

Второй — дугогасящие реакторы увеличивают индуктивное сопротивление, противодействующее развитию дуги при аварийной ситуации, связанной с образованием однофазного замыкания на контур земли в сетях, использующих глухоизолированную нейтраль.

Оба вида этих электротехнических устройств при номинальном режиме работы оборудования вносят небольшую погрешность в выходные характеристики системы, но она лежит в пределах рабочих нормативов, вполне допустима.

Что такое ударный ток короткого замыкания

При номинальном режиме высоковольтная энергия питания расходуется на преодоление полного сопротивления подключенной электрической схемы, состоящего из активной и реактивной нагрузки с индуктивными и емкостными связями. При этом создается рабочий ток, сбалансированный приложенной мощностью, напряжением, полным сопротивлением цепи.

Во время короткого замыкания происходит шунтирование огромной мощности источника случайным подключением нагрузки с маленьким активным сопротивлением, характерным для металлов. В ней отсутствует реактивная составляющая.

Это КЗ устраняет созданное равновесие в рабочей схеме, формирует новые виды токов. При этом переход источника напряжения на режим короткого замыкания происходит не мгновенно, а слегка растянут по времени. Такой кратковременный период называют переходным. При его протекании токи нагрузки изменяют форму и величину от значения гармоничной синусоиды номинального режима до характеристик установившегося подключения к «металлическому замыканию».

В ходе протекания переходных процессов полный ток от КЗ представляет собой вид сложной формы, которую для упрощения расчетов и анализа разделяют минимум на две составляющие:

1. вынужденную периодическую;

2. свободную апериодическую.

Первая часть повторяет форму питающего напряжения, а вторая возникает скачком и постепенно убывает по величине. Она формируется за счет емкостной нагрузки номинального режима, который рассматривается как холостой ход для последующего короткого замыкания.

Обе составляющие, складываясь вместе, создают ток, изменяющийся во времени сложным видом. Его необходимо учитывать при создании защит для принятия действенных мер.

За основу расчета выбирается величина с максимальным мгновенным значением апериодической составляющей. Его и называют ударным током.

Как работает токоограничивающий реактор

Основу конструкции составляет обмотка катушки, обладающей индуктивным сопротивлением, включенным в разрыв основной цепи питания. Ее параметры подбирают таким образом, чтобы при нормальных условиях эксплуатации падение напряжения на ней не превышало четырех процентов от общей величины.

При возникновении аварийной ситуации в защищаемой схеме эта индуктивность гасит большую часть приложенного высоковольтного напряжения и таким образом ограничивает действие ударного тока.

Токоограничивающий реактор рассчитывают по величине максимального тока аварии Im, которому он может противостоять по выражению:

Im= (2,54 I н/Хр)х100%

В формуле Iн обозначает значение номинального тока, а Xр — величину реактивного сопротивления обмотки.

Приведенная закономерность наглядно показывает, что увеличение индуктивности катушки ведет к уменьшению ударного тока.

Реактивные свойства обмоток обычно повышают подключением магнитопровода из стальных пластин. В конструкциях подобных реакторов при протекании больших токов по виткам происходит насыщение материала сердечника, что ведет к потере его токоограничивающих свойств. Поэтому от таких конструкций в большинстве случаев отказываются.

Токоограничивающие реакторы, как правило, изготавливают без использования стальных сердечников. Из-за необходимости достижения требуемой индуктивности они обладают повышенными габаритами и весом.

Конструкции токоограничивающих реакторов

По внутреннему исполнению они бывают:

Реакторы из бетонных блоков

Такие конструкции эксплуатируются довольно долгое время в сетях с напряжением до 35 кВ. Их обмотку делают из эластичных проводов, демпфирующих динамические и температурные нагрузки несколькими параллельными цепочками, равномерно распределяющими токи. Этим способом разгружают механическое воздействие на стационарную бетонную конструкцию.

Витки обмоток подобных реакторов выполнены многожильными проводами круглого сечения с изоляцией. Их заливают специальным сортом высокопрочного бетона, смонтированного в вертикальные колонки. При необходимости дополнения в конструкцию металлических частей используют исключительно немагнитные материалы.

Способ включения фазных катушек выбирают таким, что бы магнитные поля от них направлялись встречно. Этим приемом ослабляют динамические усилия при ударных токах КЗ.

Открытое расположение обмоток в пространстве позволяет обеспечивать хорошие условия для естественного охлаждения атмосферным воздухом. Когда тепловые нагрузки при номинальном режиме или коротких замыканиях способны превысить допустимые пределы нагрева обмоток, то применяют принудительный обдув вентиляторами.

При эксплуатации следует учитывать, что при сырой погоде бетон накапливает влажность из воздуха.

Подобные устройства до сих пор массово работают в высоковольтных сетях энергетики, успешно справляются с аварийными ситуациями, но считаются уже морально устаревшими.

Реакторы сухого типа

Они стали появляться благодаря разработке новых изоляционных материалов, основанных на кремнийорганической структуре. Она позволяет создавать изделия, успешно работающие на электрооборудовании до 220 кВ включительно.

Катушка обмотки наматывается прямоугольным многожильным кабелем повышенной прочности и покрывается слоем кремнийорганического лака. Дополнительные эксплуатационные преимущества обеспечивает покрытие кремнийорганической силиконовой изоляцией.

В результате этих доработок сухие токоограничивающие реакторы по сравнению с бетонными аналогами обладают:

меньшими габаритами и весом;

повышенной механической прочностью;

бо́льшим ресурсом работы.

У них медная обмотка проводников изолируется пропитанной кабельной бумагой и монтируется на изоляционных цилиндрах, помещенных в емкость с маслом либо другим жидким диэлектриком, одновременно выполняющим функцию отвода тепла.

Чтобы исключить нагрев металлического корпуса емкости от протекающего по виткам обмотки переменного поля промышленной частоты в подобную конструкцию включают магнитные шунты или электромагнитные экраны.

Магнитный шунт создают из магнитомягких листов стали. размещенных внутри масляной емкости около ее стенок. Образованный таким методом внутренний магнитопровод замыкает на себя магнитный поток, создаваемый обмоткой.

Электромагнитные экраны изготавливают в виде алюминиевых либо медных короткозамкнутых витков, смонтированных у стенок бака. В них индуцируется встречное электромагнитное поле, снижающее действие основного.

Читайте также:  Работа мясорубки мулинекс видео

Реакторы с броней

Создаются с сердечником. Учитывая возможность насыщения магнитопровода, такие изделия требуют точного расчета и тщательного анализа условий эксплуатации.

Броневые сердечники из электротехнических сортов стали позволяют снижать габариты и вес подобных конструкций реакторов, а заодно и стоимость.

Но при их использовании требуется обязательно учитывать то обстоятельство, чтобы ударный ток не превышал максимального возможного значения для этого типа устройств.

Защищают кабельную ЛЭП по другому принципу, чем их токоограничивающие аналоги.

Об опасности однофазных замыканий на контур земли в схеме с изолированной нейтралью

Энергетические сети с рабочим напряжением 6÷35 кВ создаются для работы на линиях электропередач с нейтралью, изолированной от земли. В этом случае между всеми проводниками образуется емкостное сопротивление, а они сами работают так же, как обкладки конденсатора, то есть накапливают заряды.

При нарушении изоляции любой из фаз на контур земли создается замкнутая электрическая цепочка, через которую начинает стекать только емкостной ток. Он не создает короткое замыкание. Поэтому подобную неисправность допускается действующими документами устранять не мгновенно, а с выдержкой времени до двух часов. Она необходима оперативному персоналу как резерв на изменение схемы питания потребителей поврежденной линии без перерыва их электроснабжения.

С этой целью релейные защиты ЛЭП настраиваются в работу на сигнал, а не на отключение питания. Однако в такой ситуации проявляется двойная опасность:

1. попадания человека под действие шагового напряжения, оказавшегося в случайном месте возникновения неисправности;

2. возникновения электрической дуги, когда емкостной ток станет превышать величину в 20 ампер.

Горение дуги разрушает изоляцию проводов и кабелей, переводит однофазное замыкание в двух- или трехфазное КЗ со всеми негативными последствиями. Ее действие ограничивают защитными устройствами.

Назначение дугогасящих реакторов

Обмотка катушки L включается между нейтралью генератора и контуром земли. Она обладает индуктивным сопротивлением, которое можно регулировать посредством переключения числа витков. Измерительный трансформатор ТА позволяет контролировать проходящий ток для принятия действенных мер.

Такой способ подключения обмотки катушки позволяет создавать последовательную цепочку, состоящую из емкости и индуктивности, к которой приложено напряжение источника фазы с поврежденной изоляцией.

Емкостной и индуктивный токи находятся в противофазе, сдвинуты на общий угол 180 градусов. Действие емкостного тока ограничивается индуктивным, направленным встречно. В итоге суммарная величина, проходящая через поврежденную изоляцию, значительно уменьшается.

Дугогасящие реакторы могут создаваться под индивидуальные условия эксплуатации, не требующие специальных настроек для линий ограниченной длины или изготавливаться с возможностью регулировки индуктивного сопротивления катушки:

В первом случае изменение индуктивности осуществляется за счет переключения числа обмоток, подключенных к отпайкам.

Плавную регулировку выполняют:

плунжерные конструкции, регулирующие воздушный зазор магнитопровода;

реакторы с подмагничиванием постоянным током, использующие принципы магнитных усилителей.

Дугогасящие реакторы постоянной индуктивности создаются без систем управления.

Для регулирования индуктивности используются конструкции с:

ручным переключением числа работающих витков. Этот процесс не только трудоемкий, но и требует снятия напряжения с реактора;

приводом, работающим автоматически под нагрузкой сети;

измерителем емкости, позволяющим автоматически подстраивать индуктивность под результат замера за счет плавного регулирования тока.

Современные конструкции дугогасящих реакторов в управлении используют микропроцессорные технологии, облегчающие возможности эксплуатации предоставлением обслуживающему персоналу расширенной информации по статистике замыканий, поиску повреждений и другим полезным функциям.

При коротком замыкании ток в цепи значительно возрастает по сравнению с током нормального режима. В высоковольтных сетях токи короткого замыкания могут достигать таких величин, что подобрать установки, которые смогли бы выдержать электродинамические силы, возникающие вследствие протекания этих токов, не представляется возможным. Для ограничения ударного тока короткого замыкания применяют токоограничивающие реакторы.

Устройство и принцип действия

Реактор — это катушка с постоянным индуктивным сопротивлением, включенная в цепь последовательно. В нормальном режиме на реакторе наблюдается падение напряжения порядка 3-4 %, что вполне допустимо. В случае короткого замыкания бо́льшая часть напряжения приходится на реактор. Значение максимального ударного тока короткого замыкания рассчитывается по формуле:

где IH — номинальный ток сети, Xp — реактивное сопротивление реактора. Соответственно, чем выше будет реактивное сопротивление, тем меньше будет значение максимального ударного тока в сети.

Реактивность прямо пропорциональна индуктивному сопротивлению катушки. При больших токах у катушек со стальными сердечниками происходит насыщение сердечника, что резко снижает реактивность, и, как следствие, реактор теряет свои токоограничивающие свойства. По этой причине реакторы выполняют без стальных сердечников, несмотря на то, что при этом, для поддержания такого же значения индуктивности, их приходится делать больших размеров и массы.

Виды реакторов

Бетонные реакторы

Получили распространение на внутренней установке и на напряжения до 35 кВ. Бетонный реактор представляет собой концентрически расположенные витки изолированного многожильного провода, залитого в радиально расположенные бетонные колонки. Бетон выпускается с высокими механическими свойствами. Все металлические детали реактора изготавливаются из немагнитных материалов. В случае больших токов применяют искусственное охлаждение.

Фазные катушки реактора располагают так, что при собранном реакторе поля катушек расположены встречно, что необходимо для преодоления продольных динамических усилий при коротком замыкании.

Масляные реакторы

Применяются в сетях с напряжением выше 35 кВ. Масляный реактор состоит из обмоток медных проводников, изолированных кабельной бумагой, которые укладываются на изоляционные цилиндры и заливаются маслом. Масло служит одновременно и изолирующей и охлаждающей средой. Для снижения нагрева стенок бака от переменного поля катушек реактора применяют электромагнитные экраны или магнитные шунты.

Электромагнитный экран представляет собой расположенные концентрично относительно обмотки реактора короткозамкнутые медные или алюминиевые витки вокруг стенок бака. Экранирование происходит за счет того, что в этих витках возникает встречное электромагнитное поле, которое компенсирует основное поле.

Магнитный шунт — это пакеты листовой стали, расположенные внутри бака около стенок, которые создают искусственный магнитопровод с магнитным сопротивлением, меньшим сопротивлением стенок бака, что заставляет основной магнитный поток реактора замыкаться по нему, а не через стенки бака.

Для предотвращения взрывов, связанных с перегревом масла в баке, согласно ПУЭ, все реакторы на напряжение 500кВ и выше должны быть оборудованы газовой защитой.

Литература

  • Родштейн Л. А. «Электрические аппараты: Учебник для техникумов» — 3-е изд., Л.:Энергоиздат. Ленингр. отд-ние, 1981.

Wikimedia Foundation . 2010 .

Смотреть что такое "Электрический реактор" в других словарях:

электрический реактор — Индуктивная катушка, предназначенная для использования ее в силовой электрической цепи Примечание. Силовая электрическая цепь по ГОСТ 18311 80 [ГОСТ 18624 73] Недопустимые, нерекомендуемые дроссель Тематики реактор электрический Классификация… … Справочник технического переводчика

электрический реактор — elektrinis reaktorius statusas T sritis automatika atitikmenys: angl. reactor vok. Drosselspule, f rus. электрический реактор, m pranc. bobine de réactance, f; inductance, f … Automatikos terminų žodynas

электрический реактор. Реактор — 3.46 электрический реактор. Реактор: Индуктивная катушка, предназначенная для использования ее в силовой электрической цепи. Источник: СТО 17330282.27.140.008 2008: Системы питания со … Словарь-справочник терминов нормативно-технической документации

насыщающийся (электрический) реактор — трансреактор — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы трансреактор EN transductor … Справочник технического переводчика

электрический — 3.45 электрический [электронный, программируемый электронный]; Е/Е/РЕ (electrical/electronic/ programmable electronic; Е/Е/РЕ) основанный на электрической и/или электронной, и/или программируемой электронной технологии. Источник … Словарь-справочник терминов нормативно-технической документации

Читайте также:  Размеры отрезных дисков для ушм

РЕАКТОР — (1) биологический (ферментёр) аппарат для получения в промышленном масштабе различных биологических продуктов при размножении микроорганизмов в питательной среде и стерильных условиях, при определённых температурах и др. параметрах… … Большая политехническая энциклопедия

РЕАКТОР ЭЛЕКТРИЧЕСКИЙ — высоковольтный электрический аппарат (в виде катушки индуктивности) для ограничения тока короткого замыкания (КЗ) и поддержания достаточного напряжения на шинах распределительного устройства при кратковременном коротком замыкании в сети … Большой Энциклопедический словарь

реактор без стали — Реактор без магнитопровода Примечание. Допускаются сокращенные наименования реакторов в соответствии с формой обмотки и способом защиты элементов реактора от вредных воздействий его магнитного поля или ослабления внешнего поля, в частности… … Справочник технического переводчика

реактор помехоподавления — Реактор, предназначенный для работы в устройстве ограничения радиопомех, включаемом последовательно в фазу или линию [ГОСТ 18624 73] реактор помехоподавления Ндп. радиореактор По ГОСТ 18624 73 [ГОСТ 19350 74] реактор помехоподавления [Лугинский Я … Справочник технического переводчика

реактор с линейной характеристикой — Реактор, веберамперная характеристика которого практически линейна при токах до значений, во много раз превышающих номинальный Примечание. Динамическая индуктивность не должна изменяться более чем на 5% при изменении тока от 2% номинального до… … Справочник технического переводчика

Реактор — это катушка с постоянным индуктивным сопротивлением, включенная в цепь последовательно.В большинстве конструкций токоограничивающие реакторы не имеют ферромагнитных сердечников. В нормальном режиме на реакторе наблюдается падение напряжения порядка 3—4 %, что вполне допустимо. В случае короткого замыкания бомльшая часть напряжения приходится на реактор. Значение максимального ударного тока короткого замыкания рассчитывается по формуле:

где IH — номинальный ток сети, Xp — реактивное сопротивление реактора.

Соответственно, чем выше будет реактивное сопротивление, тем меньше будет значение максимального ударного тока в сети.

Реактивность прямо пропорциональна индуктивному сопротивлению катушки. При больших токах у катушек со стальными сердечниками происходит насыщение сердечника, что резко снижает реактивность, и, как следствие, реактор теряет свои токоограничивающие свойства. По этой причине реакторы выполняют без стальных сердечников, несмотря на то, что при этом, для поддержания такого же значения индуктивности, их приходится делать больших размеров и массы. В случае если в линии электропередач 0.4-110 кВ имеются устройства передачи данных по технологии PLC, то реактор будет гасить эти частоты.

Токоограничивающие реакторы подразделяются:

  • · по месту установки: наружного применения и внутреннего;
  • · по напряжению: среднего (3?—35 кВ) и высокого (110?—500 кВ);
  • · по конструктивному исполнению: на бетонные, сухие, масляные и броневые;
  • · по расположению фаз: вертикальное, горизонтальное и ступенчатое;
  • · по исполнению обмоток: одинарные и сдвоенные;
  • · по функциональному назначению: фидерные, фидерные групповые и межсекционные.

Получили распространение на внутренней установке на напряжения сетей до 35 кВ включительно. Бетонный реактор представляет собой концентрически расположенные витки изолированного многожильного провода, залитого в радиально расположенные бетонные колонки. При коротких замыканиях обмотки и детали испытывают значительные механические напряжения, обусловленные электродинамическими усилиями, поэтому при их изготовлении используется бетон с высокой прочностью. Все металлические детали реактора изготавливаются из немагнитных материалов. В случае больших токов применяют искусственное охлаждение.

Фазные катушки реактора располагают так, что при собранном реакторе поля катушек расположены встречно, что необходимо для преодоления продольных динамических усилий при коротком замыкании. Бетонные реакторы могут выполняться как естественно-воздушного так и воздушно-принудительного охлаждения (для больших номинальных мощностей), т.н. "дутьё" (добавляется буква "Д" в маркировке).

Сейчас (2014 г.) бетонные реакторы считаются морально устаревшими и вытесняются сухими реакторами.

Применяются в сетях с напряжением выше 35 кВ. Масляный реактор состоит из обмоток медных проводников, изолированных кабельной бумагой, которые укладываются на изоляционные цилиндры и заливаются маслом или иным электротехническим диэлектриком. Жидкость служит одновременно и изолирующей и охлаждающей средой. Для снижения нагрева стенок бака от переменного поля катушек реактора применяют электромагнитные экраны и магнитные шунты.

Электромагнитный экран представляет собой расположенные концентрично относительно обмотки реактора короткозамкнутые медные или алюминиевые витки вокруг стенок бака. Экранирование происходит за счет того, что в этих витках индуцируется электромагнитное поле, направленное встречно и компенсирующее основное поле.

Магнитный шунт — это пакеты листовой стали, расположенные внутри бака около стенок, которые создают искусственный магнитопровод с магнитным сопротивлением, меньшее, чем у стенок бака, что заставляет основной магнитный поток реактора замыкаться по нему, а не через стенки бака.

Для предотвращения взрывов, связанных с перегревом масла в баке, согласно ПУЭ, все реакторы на напряжение 500 кВ и выше должны быть оборудованы газовой защитой.

Сухие реакторы относятся к новому направлению в конструировании токоограничивающих реакторов и применяются в сетях с номинальным напряжением до 220 кВ. В одном из вариантов конструкции сухого реактора обмотки выполняются в виде кабелей (обычно прямоугольного сечения для уменьшения габаритов, повышения механической прочности и срок службы) с кремнеорганической изоляцией, намотанных на диэлектрический каркас. Преимуществом применения кремнеорганической изоляции является большая термостойкость, устойчивость к электродинамическим нагрузкам, эластичность, герметичность, неизменность диэлектрических и механических свойств при длительном времени эксплуатации, что в свою очередь уменьшает потери энергии на вихревые токи и нагрев, и позволяет снизить добавочные потери на вихревые токи от 20 до 40%. В другой конструкции реакторов провод обмотки изолируется полиамидной плёнкой, а затем двумя слоями стеклянных нитей с проклейкой и пропиткой их кремнеорганичексим лаком и последующим запеканием, что соответствует классу нагревостойкости Н (рабочая температура до 180 °С); прессовка и стяжка бандажами обмоток делает их устойчивыми к механическим наряжениям при ударном токе.

Несмотря на тенденцию изготавливать токоограничивающие реакторы без ферромагнитного магнитопровода (вследствие опасности насыщения магнитной системы при токе к.з.и как следствие-резким падением токоогрничивающих свойств) некоторые электротехнические предприятия России ( ООО "КПМ", г.Санкт-Петербург; СВЭЛ, г.Екатеринбург) выпускают реакторы с сердечниками броневой конструкции из электротехнической стали. Преимуществом данного типа токоограничивающих реакторов является меньшие массо-габаритные показатели и стоимость (за счёт уменьшения в конструкции доли цветных металлов). Недостаток: возможность потери токоограничивающих свойств при ударных токах, больших номинального для данного реактора, что в свою очередь требует тщательного расчёта токов к.з. в сети и выбора броневого реактора таким образом, чтобы в любом режиме сети ударный ток к.з. не превышал номинального.

Сдвоенные реакторы применяются для уменьшения падения напряжения в нормальном режиме, для чего каждая фаза состоит из двух обмоток с сильной магнитной связью, включаемых встречно, к каждой из которых подключается примерно одинаковая нагрузка, в результате чего индуктивность уменьшается (зависит от остаточного разностного магнитного поля). При к.з. в цепи одной из обмоток поле резко возрастает, индуктивность увеличивается и происходит процесс токоограничения.

Межсекционные и фидерные реакторы

Межсекционные реакторы включаются между секциями для ограничения токов и поддержания напряжения в одной из секций, при к.з. в другой секции. Фидерные и фидерные групповые устанавливаются на отходящих фидерах (групповые являются общими для несколько фидеров).

Автоматические выключатели, осуществляя отключение цепей при коротких замыканиях, не защищают эти цепи от разрушающего действия электродинамических сил. В современных мощных сетях токи короткого замыкания, а следовательно, и электродинамические силы бывают настолько велики, что часто не представляется возможным выполнить установки с требуемой электродинамической и термической стойкостью. С целью ограничения ударного тока короткого замыкания (КЗ) в мощных сетях применяются Токоограничивающие реакторы, которые устанавливаются на отходящих фидерах (1 и 2) (рис. 3-1) и между секциями сборных шин (3). Кроме ограничения тока КЗ реакторы одновременно во время короткого замыкания поддерживают напряжение на питающих шинах на некотором определенном уровне.

Читайте также:  Цифровой термометр rst 02401 инструкция по пользованию

Реактор представляет собой катушку с постоянным индуктивным сопротивлением х = щL. Одним из основных параметров является его индуктивное сопротивление Хр, равное отношению падения напряжения на реакторе Uр при протекании по нему номинального тока к фазному напряжению Uф. Индуктивное сопротивление выражается в процентах. Если пренебречь омическим сопротивлением реактора, то

Индуктивное сопротивление фидерных реакторов выбирается обычно 6 — 8 %, а секционных 8-12%.

Следует отметить, что при номинальном режиме потери напряжения на реакторе ?Uф не равны численно падению напряжения Up на нем (рис. 3 -2, а и б) и существенно зависят от величины cosц(?Uф > 0 при cosц =1; ?Uф = Uр при cosц = 0; ?Uф ?0,5Uр при cosц = 0,8). Таким образом, при номинальном режиме обеспечивается допустимое (3—4%) отклонение напряжения у потребителей. При коротком замыкании cosц>0 и большая часть напряжения приходится на реактор (рис. 3-2,6), вследствие чего на сборных шинах поддерживается сравнительно высокое остаточное напряжение, значение которого зависит от соотношения сопротивлений сети до реактора и самого реактора. Если пренебречь активным сопротивлением сети и реактора, то кратность установившегося тока короткого замыкания будет

Ударный ток короткого замыкания при расчете реакторов берется равным

Для поддержания постоянства индуктивного сопротивления токоограничивающие реакторы выполняются без стальных сердечников. При этом они получаются больших размеров и массы. Реакторы со стальными сердечниками при равной индуктивности имели бы меньшие размеры. Однако у них при больших токах сердечники насыщаются, индуктивное сопротивление таких реакторов резко снижается и реакторы теряют свои токоограничивающие свойства как раз в тот момент, когда они необходимы. Ввиду этого реакторы со стальными сердечниками не получили распространения.

Индуктивность L реакторов может быть рассчитана по следующим формулам (размеры даны в сантиметрах, L — в миллигенри):

1) для реактора с соотношением геометрических размеров подобно рис. 3-3, а и числом витков w

где б = 3/4 при 0,3 ? D/[2(h+b)]?1 и б = 1/2 при 1 ? D/[2(h+b)]?3;

2) для реактора, у которого h/D >> b/D

3) для реактора, у которого b/D >> h/D

Получили распространение сдвоенные реакторы 4. Такой реактор питает два фидера. Катушки каждой фазы включены так, что создаваемые ими потоки направлены встречно. При номинальном токе индуктивность (следовательно, и потери напряжения) каждой из катушек снижается из-за размагничивающего действия другой. При равных токах и коэффициенте связи, стремящемся к единице, индуктивность реактора стремилась бы к нулю. Обычно коэффициент связи равен 0,4—0,6. Соответственно уменьшаются и потери напряжения. При коротком замыкании на одном из фидеров размагничивающим действием катушки другого фидера, обтекаемой номинальным током, можно пренебречь. Индуктивность и токоограничивающее действие сдвоенного реактора получаются такими же, как у одинарного.

На напряжения до 35 кВ и для внутренней установки почти исключительное распространение получили бетонные реакторы. Бетонный реактор выполняется в виде концентрически расположенных витков 1 из специального круглого изолированного многожильного провода, залитых в радиально расположенные бетонные колонки 2. Благодаря своей эластичности провод демпфирует термические и динамические усилия и тем самым частично снимает напряжения с бетона. Обмотки реактора на большие токи выполняются из нескольких параллельных проводов с транспозицией этих параллелей, обеспечивающей равномерное распределение токов.

Число колонок определяется диаметром намотки. Основная изоляция реактора — бетон, который проходит специальный технологический режим и выпускается с высокими механическими свойствами. Весь реактор после изготовления подвергается сушке, пропитке и покрытию влагостойкими лаками. Каждая колонка реактора устанавливается на опорные изоляторы 3, которые обеспечивают изоляцию от земли и между фазами. Фазы могут быть расположены вертикально а также горизонтально или ступенчато. Все металлические детали реактора выполняются из немагнитных материалов. При больших токах применяется искусственное охлаждение.

На напряжения свыше 35 кВ и для наружной установки используются масляные реакторы. Обмотки 3 из медных проводников, изолированных кабельной бумагой, укладываются на изоляционные цилиндры 4 и размещаются в баках (баке) 2, заливаемых маслом. Концы обмотки каждой фазы выводятся через проходные изоляторы 1 наружу. Масло служит и как изолирующая, и как охлаждающая среда.

· Переменное поле катушек реактора, замыкающееся через стенки бака, может привести к чрезмерному нагреву этих стенок. Для снижения нагрева стенок (и масла) необходимо ограничить замыкающийся через них магнитный поток. Для этого служат электромагнитные экраны 5 или магнитные шунты. Электромагнитный экран представляет собой медные (алюминиевые) короткозамкнутые витки, расположенные концентрично относительно обмотки реактора у стенок бака. Индуцируемые в витках токи создают в стенках бака поле, направленное встречно основному, и почти полностью его компенсируют. Нагрев стенок снижается. Магнитный шунт представляет собой пакеты листовой стали, укрепленные около стенок бака с внутренней его стороны и создающие искусственный магнитопровод с магнитным сопротивлением, значительно меньшим сопротивления стенок бака. Магнитный поток реактора замыкается по магнитному шунту, а не через стенки. Реакторы применяют для ограничения токов короткого замыкания и поддержания на сборных шинах установки значительного остаточного напряжения. Реактор, представляющий собой катушку с большим индуктивным и малым активным сопротивлением, устанавливают на отходящих кабельных линиях или в цепи понижающих трансформаторов мощных станций и подстанций. При коротком замыкании за реактором ток короткого замыкания значительно меньше, чем в нереактированной сети, поскольку общее индуктивное сопротивление в первом случае больше (за счет сопротивления реакторов). Наибольшее распространение получили бетонные реакторы с воздушным охлаждением, простые по конструкции и надежные в работе. Обмотку / реактора выполняют из гибкого многожильного изолированного провода. Витки обмотки укладывают на специальном каркасе и скрепляют бетонными колонками 2, пропитанными лаком. В трехфазных установках применяют реакторы, состоящие из трех катушек, изолированных друг от друга и от заземленных частей. Реактор характеризуется номинальными током и напряжением, а также индуктивным сопротивлением в процентах, которое соответствует процентному падению напряжения в реакторе при протекании номинального тока.

Бетонные реакторы изготовляют на номинальные напряжения 6 и 10 кВ и токи до 4000 А при индуктивном сопротивлении от 4 до 12%. На рис. 1 показан бетонный реактор РБА-6-400-4, где буквы и цифры означают: Р — реактор, Б — бетонный, А — с алюминиевой обмоткой, 6 — номинальное напряжение, кВ, 400 — номинальный ток, А, 4 — индуктивное сопротивление, %.

При номинальных токах /н 1500 А обычно применяют вертикальную установку фаз (катушек) реактора, при токах /н > 1500 А — горизонтальную установку. Направление намотки витков средней фазы должно быть противоположным направлению витков верхней и нижней фаз (при вертикальной установке) и крайних фаз (при горизонтальной установке). Это необходимо для того, чтобы при протекании тока короткого замыкания катушки притягивались, а не отталкивались, как было бы при одинаковом направлении намотки витков всех катушек. При такой конструкции легче выполнить их надежное крепление.

В последние годы широко применяют сдвоенные реакторы, аналогичные по конструкции рассмотренным ранее, но отличающиеся от них выводом от середины обмотки, который подсоединяют к источнику питания, а к двум другим выводам присоединяют защищаемое оборудование. При использовании сдвоенных реакторов уменьшается их общее необходимое количество.

Оцените статью
Добавить комментарий