Вентилятор охлаждения в системном блоке

Сергей Плотников

31 января 2018

Эта статья является продолжением серии ознакомительных материалов по сборке системных блоков. Если помните, в прошлом году вышла пошаговая инструкция «Как собрать компьютер», в которой подробно описаны все основные моменты по созданию и проверке ПК. Однако, как это часто бывает, при сборке системного блока важную роль играют нюансы. В частности, правильная установка вентиляторов в корпусе увеличит эффективность работы всех систем охлаждения, а также уменьшит нагрев основных компонентов компьютера. Именно этот вопрос и рассмотрен в статье далее.

Предупреждаю сразу, что эксперимент проводился на базе одной типовой сборки с использованием материнской платы ATX и корпуса форм-фактора Midi-Tower. Представленный в статье вариант считается наиболее распространенным, хотя все мы прекрасно знаем, что компьютеры бывают разными, а потому системы с одинаковым уровнем быстродействия могут быть собраны десятками (если не сотнями) различных способов. Именно поэтому приведенные результаты актуальны исключительно для рассмотренной конфигурации. Судите сами: компьютерные корпусы даже в рамках одного форм-фактора имеют разные объем и количество посадочных мест под установку вентиляторов, а видеокарты даже с использованием одного и того же GPU собраны на печатных платах разной длины и оснащены кулерами с разным числом теплотрубок и вентиляторов. И все же определенные выводы наш небольшой эксперимент сделать вполне позволит.

⇡#Современный системный блок

В интернете можно найти большое количество статей про организацию охлаждения в системном блоке, но многие из них написаны в те далекие времена, когда стандартными (типовыми, классическими и так далее) считались компьютеры с верхним расположением блока питания и большим количеством корзин для 3,5- и 5,25-дюймовых устройств. Что ж, за последнее время стандарты заметно изменились. Данный факт наглядно показан в статье «Компьютер, который вы могли собрать, но пожалели денег, — лучшие корпуса, БП и охлаждение 2017 года». Тенденции, если я ничего не путаю, по преображению стандартных Tower-корпусов начали прослеживаться еще в 2014 году, но только теперь они стали массовым явлением.

Пример сборки в корпусе Thermaltake Versa N27

Так, компьютерный корпус с посадочным местом под установку блока питания в верхней части в 2018 году можно смело называть диковинкой. Обычно такие устройства расположены в ценовом диапазоне до 2 000 рублей. В большинстве остальных Tower-корпусов PSU крепится снизу, к тому же в последнее время его вовсе прячут за декоративной заслонкой. Туда же, под импровизированную шторку, иногда помещают корзину для жестких дисков. Например, в последних пяти обзорах на момент написания статьи на нашем сайте были рассмотрены именно такие модели.

На мой взгляд, в первую очередь производители корпусов поступают таким образом исходя из эстетических соображений, потому что применение забрала, скрывающего блок питания, неиспользуемые провода и HDD, при наличии окошка на боковой стенке делает систему заметно симпатичнее. К тому же в ПК с таким корпусом можно смело устанавливать немодульный блок питания, так как незадействованные кабели никак не скажутся на внешнем виде. А еще шторка четко отделяет блок питания от остальных комплектующих, что, в свою очередь, хорошо сказывается на его охлаждении. Как видите, мы наблюдаем сплошные плюсы.

Пример сборки в корпусе Thermaltake Core X31

Размеры Tower-корпусов за последнее время изменились несильно, однако, несомненно, внутренняя «перестройка» была спровоцирована в том числе и сменой приоритетов пользователей. Люди практически не пользуются оптическими приводами, а потому необходимости в 5,25-дюймовых отсеках в корпусе нет. В системные блоки все чаще устанавливают компактные твердотельные накопители — SSD форм-фактора M.2 вовсе не нуждаются в каких-либо корзинах. С учетом большой популярности онлайн-сервисов и облачных хранилищ нет необходимости устанавливать в ПК большое количество жестких дисков, поэтому один-два винчестера вполне можно закрепить на заградительной стенке корпуса. Наконец, все больше производителей железа выпускают яркие, эффектные комплектующие с подсветкой. Такая тенденция может не нравиться, она может бесить и раздражать, однако все больше производителей корпусов выпускают все больше оригинальных красочных моделей с окошком на боковой стенке.

Все перечисленные выше конструктивные особенности новой «классики» позволили, во-первых, аккуратно укладывать провода и шлейфы, что способствует лучшей циркуляции воздуха внутри корпуса и меньшему накоплению пыли. Во-вторых, отсутствие корзин для 3,5- и 5,25-дюймовых устройств увеличивает свободное пространство внутри корпуса. По этой же причине мы можем установить большее число вентиляторов, которые будут работать эффективнее. Собственно говоря, именно это и наблюдается в современных устройствах, так как даже в корпусах форм-фактора mini-Tower, поддерживающих установку только mini-ITX-материнских плат, можно закрепить на передней панели минимум два 120-мм вентилятора. Корпуса midi-Tower и full-Tower позволяют инсталлировать три, иногда четыре вентилятора на передней панели и столько же — на верхней стенке.

Примитивная иллюстрация перемещения воздушных потоков в современном Tower-корпусе

На фотографии выше показана сборка в midi-Tower-корпусе Thermaltake Core X31. Это устройство позволяет установить три вентилятора (как 120-мм, так и 140-мм) спереди, три вентилятора сверху, один снизу и один сзади. Следовательно, сборщик может полностью управлять воздушными потоками, наблюдаемыми в системном блоке. С учетом традиционной установки комплектующих и стандартного расположения самого корпуса (на столе рядом с монитором и пользователем; под столом) принято, что вентиляторы, установленные на передней и нижней панелях, засасывают воздух, а «карлсоны», закрепленные на верхней и задней стенках, выдувают его. Иллюстрация, приведенная выше, является примитивной, потому что, на самом деле, вариантов забора и выдува воздуха в корпусах может быть масса. Так, потоки «пробираются» сквозь отверстия в заглушках PCI Express, через прокладки на заградительной стенке, а также через крошечные щели в стыках сопряженных панелей.

Нагрев комплектующих в корпусе при отсутствии вентиляторов

Для большей наглядности приведу несколько снимков, сделанных промышленным тепловизором. Отчетливо видно, что при отсутствии корпусных вентиляторов нагретый воздух занимает большую часть внутреннего объема корпуса. В системе применяется процессорный кулер башенного типа, поэтому какой-никакой выдув все же присутствует. Огромную роль здесь играет общий объем Thermaltake Core X31, так как в более компактном корпусе температуры оказались бы заметно выше — это очевидный факт.

При установке одного вентилятора, работающего на вдув, на переднюю панель и одного вентилятора, работающего на выдув, на заднюю системам охлаждения процессора и видеокарты становится заметно легче выполнять свои непосредственные обязанности. Так, подсистема питания графического ускорителя теперь холоднее на 10 градусов Цельсия. Остальным компонентам блока тоже стало заметно комфортнее.

Нагрев комплектующих в корпусе при работе всех вентиляторов

Одного этого примера уже достаточно для констатации очевидной вещи: любая игровая система в Tower-корпусе должна оснащаться вентиляторами. Осталось только определить верное их количество, а также разобраться с правильным расположением этих элементов ПК. Чем мы и займемся далее.

⇡#История одного игрового ПК

Напомню, все эксперименты проводились с типовым игровым системным блоком, собранным в корпусе форм-фактора Midi-Tower. Использование других устройств может повлиять – и, уверен, повлияет – на итоговые результаты. В некоторых случаях — незначительно, в других — кардинально. По мере повествования я постараюсь осветить те или иные моменты, основываясь в том числе и на собственном опыте.

Для проведения этого эксперимента я обратился за помощью к компаниям MSI и Thermaltake, которые любезно предоставили часть комплектующих на тест. Система получилась следующей:

  • Центральный процессор Intel Core i7-8700K, 6 ядер и 12 потоков, 3,7 (4,7) ГГц.
  • Процессорное охлаждение Thermaltake Frio Silent 12.
  • Оперативная память Corsair CMK16GX4M2A2666C16, 16 Гбайт, DDR4-2666.
  • Материнская плата MSI Z370 GAMING M5.
  • Накопители Western Digital WD10EFRX, Western Digital WDS100T1B0A и Team Group T-FORCE CARDEA.
  • Видеокарта MSI GeForce GTX 1080 Ti GAMING X TRIO, 11 Гбайт GDDR5X.
  • Корпус Thermaltake Core X31.
  • Корпусные вентиляторы Thermaltake Riing Plus 12 RGB Radiator Fan TT Premium Edition, два комплекта по три штуки.
  • Блок питания Thermaltake Smart Pro RGB 750W Bronze, 750 Вт.

По факту мы имеем дело с одним из вариантов сборки, которую я называю максимальной. Она, а также другие системы рассматриваются в рубрике «Компьютер месяца».

Intel Core i7-8700K

Важной «деталью» системного блока стал центральный процессор Core i7-8700K. Подробный обзор этого шестиядерника находится здесь, поэтому не буду лишний раз повторяться. Отмечу только, что охлаждение флагмана для платформы LGA1151-v2 является непростой задачей даже для самых эффективных кулеров и систем жидкостного охлаждения.

В систему было установлено 16 Гбайт оперативной памяти стандарта DDR4-2666. Операционная система Windows 10 была записана на твердотельный накопитель Western Digital WDS100T1B0A. С обзором этого SSD вы можете познакомиться здесь.

MSI GeForce GTX 1080 Ti GAMING X TRIO

Видеокарта MSI GeForce GTX 1080 Ti GAMING X TRIO, как видно из названия, оснащена кулером TRI-FROZR с тремя вентиляторами TORX 2.0. По данным производителя, эти крыльчатки создают на 22 % более мощный воздушный поток, оставаясь при этом практически бесшумными. Низкая громкость, как говорится на официальном сайте MSI, обеспечивается в том числе и за счет использования двухрядных подшипников. Отмечу, что радиатор системы охлаждения состоит из шести массивных теплотрубок, а его ребра выполнены в виде волн. По данным производителя, такая конструкция увеличивает общую площадь рассеивания на 10 %. Радиатор соприкасается в том числе и с элементами подсистемы питания. Чипы памяти MSI GeForce GTX 1080 Ti GAMING X TRIO дополнительно охлаждаются специальной пластиной.

Вентиляторы ускорителя начинают вращаться только в тот момент, когда температура чипа достигает 60 градусов Цельсия. На открытом стенде максимальная температура GPU составила всего 67 градусов Цельсия. При этом вентиляторы системы охлаждения раскручивались максимум на 47 % — это примерно 1250 оборотов в минуту. Реальная частота GPU в режиме по умолчанию стабильно держалась на уровне 1962 МГц. Как видите, MSI GeForce GTX 1080 Ti GAMING X TRIO имеет приличный фабричный разгон.

Адаптер оснащен массивным бекплейтом, увеличивающим жесткость конструкции. Задняя сторона видеокарты имеет L-образную полосу со встроенной светодиодной подсветкой Mystic Light. Пользователь при помощи одноименного приложения может отдельно настроить три зоны свечения. К тому же вентиляторы обрамлены двумя рядами симметричных огней в форме драконьих когтей.

Согласно техническим характеристикам, MSI GeForce GTX 1080 Ti GAMING X TRIO имеет три режима работы: Silent Mode — 1480 (1582) МГц по ядру и 11016 МГц по памяти; Gaming Mode — 1544 (1657) по ядру и 11016 МГц по памяти; OC Mode — 1569 (1683) МГц по ядру и 11124 МГц по памяти. По умолчанию у видеокарты активирован игровой режим.

С уровнем производительности референсной GeForce GTX 1080 Ti вы можете познакомиться в этой статье. А еще на нашем сайте выходил обзор MSI GeForce GTX 1080 Ti Lightning Z. Этот графический адаптер тоже оснащен системой охлаждения TRI-FROZR.

MSI Z370 GAMING M5

В основе сборки лежит материнская плата MSI Z370 GAMING M5 форм-фактора ATX. Это слегка видоизмененная версия платы MSI Z270 GAMING M5, обзор которой вышел на нашем сайте прошлой весной. Устройство отлично подойдет для разгоняемых K-процессоров Coffee Lake, так как конвертер питания с цифровым управлением Digitall Power состоит из пяти двойных фаз, реализованных по схеме 4+1. Четыре канала отвечают непосредственно за работу CPU, еще один — за встроенную графику.

Все компоненты цепей питания соответствуют стандарту Military Class 6 — это касается как дросселей с титановым сердечником, так и конденсаторов Dark CAP с не менее чем десятилетним сроком службы, а также энергоэффективных катушек Dark Choke. А еще слоты DIMM для установки оперативной памяти и PEG-порты для установки видеокарт облачены в металлизированный корпус Steel Armor, а также имеют дополнительные точки пайки на обратной стороне платы. Для ОЗУ применена дополнительная изоляция дорожек, а каждый канал памяти разведен в своем слое текстолита, что, по заявлению производителя, позволяет добиться более «чистого» сигнала и увеличить стабильность разгона модулей DDR4.

Из полезного отмечу наличие сразу двух разъемов формата M.2, которые поддерживают установку накопителей PCI Express и SATA 6 Гбит/с. В верхний порт можно установить SSD длиной до 110 мм, в нижний — до 80 мм. Второй порт дополнительно оснащен металлическим радиатором M.2 Shield, который контактирует с накопителем при помощи термопрокладки.

За проводное соединение в MSI Z370 GAMING M5 отвечает гигабитный контроллер Killer E2500, а за звук — чип Realtek 1220. Звуковой тракт Audio Boost 4 получил конденсаторы Chemi-Con, спаренный усилитель для наушников с сопротивлением до 600 Ом, фронтальный выделенный аудиовыход и позолоченные аудиоразъемы. Все компоненты звуковой зоны изолированы от остальных элементов платы токонепроводящей полосой с подсветкой.

Подсветка материнской платы Mystic Light поддерживает 16,8 млн цветов и работает в 17 режимах. К материнской плате можно подключить RGB-ленту, соответствующий 4-пиновый разъем распаян в нижней части платы. Кстати, в комплекте с устройством идет 800-мм удлинитель со сплиттером для подключения дополнительной светодиодной ленты.

Плата оснащена шестью 4-контактными разъемами для подключения вентиляторов. Общее количество подобрано оптимально, расположение — тоже. Порт PUMP_FAN, распаянный рядом с DIMM, поддерживает подключение крыльчаток или помпы с током силой до 2 А. Расположение опять же весьма удачное, так как к этому коннектору просто подключить помпу и от необслуживаемой СЖО, и от кастомной системы, собранной вручную. Система ловко управляет в том числе «карлсонами» с 3-контактным коннектором. Частота регулируется как по количеству оборотов в минуту, так и по напряжению. Есть возможность полной остановки вентиляторов.

Наконец, отмечу еще две очень полезные «фишки» MSI Z370 GAMING M5. Первая — это наличие индикатора POST-сигналов. Вторая — блок светодиодов EZ Debug LED, расположенный рядом с разъемом PUMP_FAN. Он наглядно демонстрирует, на каком этапе происходит загрузка системы: на стадии инициализации процессора, оперативной памяти, видеокарты или накопителя.

Сергей Плотников

31 января 2018

Эта статья является продолжением серии ознакомительных материалов по сборке системных блоков. Если помните, в прошлом году вышла пошаговая инструкция «Как собрать компьютер», в которой подробно описаны все основные моменты по созданию и проверке ПК. Однако, как это часто бывает, при сборке системного блока важную роль играют нюансы. В частности, правильная установка вентиляторов в корпусе увеличит эффективность работы всех систем охлаждения, а также уменьшит нагрев основных компонентов компьютера. Именно этот вопрос и рассмотрен в статье далее.

Предупреждаю сразу, что эксперимент проводился на базе одной типовой сборки с использованием материнской платы ATX и корпуса форм-фактора Midi-Tower. Представленный в статье вариант считается наиболее распространенным, хотя все мы прекрасно знаем, что компьютеры бывают разными, а потому системы с одинаковым уровнем быстродействия могут быть собраны десятками (если не сотнями) различных способов. Именно поэтому приведенные результаты актуальны исключительно для рассмотренной конфигурации. Судите сами: компьютерные корпусы даже в рамках одного форм-фактора имеют разные объем и количество посадочных мест под установку вентиляторов, а видеокарты даже с использованием одного и того же GPU собраны на печатных платах разной длины и оснащены кулерами с разным числом теплотрубок и вентиляторов. И все же определенные выводы наш небольшой эксперимент сделать вполне позволит.

⇡#Современный системный блок

В интернете можно найти большое количество статей про организацию охлаждения в системном блоке, но многие из них написаны в те далекие времена, когда стандартными (типовыми, классическими и так далее) считались компьютеры с верхним расположением блока питания и большим количеством корзин для 3,5- и 5,25-дюймовых устройств. Что ж, за последнее время стандарты заметно изменились. Данный факт наглядно показан в статье «Компьютер, который вы могли собрать, но пожалели денег, — лучшие корпуса, БП и охлаждение 2017 года». Тенденции, если я ничего не путаю, по преображению стандартных Tower-корпусов начали прослеживаться еще в 2014 году, но только теперь они стали массовым явлением.

Пример сборки в корпусе Thermaltake Versa N27

Так, компьютерный корпус с посадочным местом под установку блока питания в верхней части в 2018 году можно смело называть диковинкой. Обычно такие устройства расположены в ценовом диапазоне до 2 000 рублей. В большинстве остальных Tower-корпусов PSU крепится снизу, к тому же в последнее время его вовсе прячут за декоративной заслонкой. Туда же, под импровизированную шторку, иногда помещают корзину для жестких дисков. Например, в последних пяти обзорах на момент написания статьи на нашем сайте были рассмотрены именно такие модели.

На мой взгляд, в первую очередь производители корпусов поступают таким образом исходя из эстетических соображений, потому что применение забрала, скрывающего блок питания, неиспользуемые провода и HDD, при наличии окошка на боковой стенке делает систему заметно симпатичнее. К тому же в ПК с таким корпусом можно смело устанавливать немодульный блок питания, так как незадействованные кабели никак не скажутся на внешнем виде. А еще шторка четко отделяет блок питания от остальных комплектующих, что, в свою очередь, хорошо сказывается на его охлаждении. Как видите, мы наблюдаем сплошные плюсы.

Пример сборки в корпусе Thermaltake Core X31

Размеры Tower-корпусов за последнее время изменились несильно, однако, несомненно, внутренняя «перестройка» была спровоцирована в том числе и сменой приоритетов пользователей. Люди практически не пользуются оптическими приводами, а потому необходимости в 5,25-дюймовых отсеках в корпусе нет. В системные блоки все чаще устанавливают компактные твердотельные накопители — SSD форм-фактора M.2 вовсе не нуждаются в каких-либо корзинах. С учетом большой популярности онлайн-сервисов и облачных хранилищ нет необходимости устанавливать в ПК большое количество жестких дисков, поэтому один-два винчестера вполне можно закрепить на заградительной стенке корпуса. Наконец, все больше производителей железа выпускают яркие, эффектные комплектующие с подсветкой. Такая тенденция может не нравиться, она может бесить и раздражать, однако все больше производителей корпусов выпускают все больше оригинальных красочных моделей с окошком на боковой стенке.

Все перечисленные выше конструктивные особенности новой «классики» позволили, во-первых, аккуратно укладывать провода и шлейфы, что способствует лучшей циркуляции воздуха внутри корпуса и меньшему накоплению пыли. Во-вторых, отсутствие корзин для 3,5- и 5,25-дюймовых устройств увеличивает свободное пространство внутри корпуса. По этой же причине мы можем установить большее число вентиляторов, которые будут работать эффективнее. Собственно говоря, именно это и наблюдается в современных устройствах, так как даже в корпусах форм-фактора mini-Tower, поддерживающих установку только mini-ITX-материнских плат, можно закрепить на передней панели минимум два 120-мм вентилятора. Корпуса midi-Tower и full-Tower позволяют инсталлировать три, иногда четыре вентилятора на передней панели и столько же — на верхней стенке.

Примитивная иллюстрация перемещения воздушных потоков в современном Tower-корпусе

На фотографии выше показана сборка в midi-Tower-корпусе Thermaltake Core X31. Это устройство позволяет установить три вентилятора (как 120-мм, так и 140-мм) спереди, три вентилятора сверху, один снизу и один сзади. Следовательно, сборщик может полностью управлять воздушными потоками, наблюдаемыми в системном блоке. С учетом традиционной установки комплектующих и стандартного расположения самого корпуса (на столе рядом с монитором и пользователем; под столом) принято, что вентиляторы, установленные на передней и нижней панелях, засасывают воздух, а «карлсоны», закрепленные на верхней и задней стенках, выдувают его. Иллюстрация, приведенная выше, является примитивной, потому что, на самом деле, вариантов забора и выдува воздуха в корпусах может быть масса. Так, потоки «пробираются» сквозь отверстия в заглушках PCI Express, через прокладки на заградительной стенке, а также через крошечные щели в стыках сопряженных панелей.

Нагрев комплектующих в корпусе при отсутствии вентиляторов

Для большей наглядности приведу несколько снимков, сделанных промышленным тепловизором. Отчетливо видно, что при отсутствии корпусных вентиляторов нагретый воздух занимает большую часть внутреннего объема корпуса. В системе применяется процессорный кулер башенного типа, поэтому какой-никакой выдув все же присутствует. Огромную роль здесь играет общий объем Thermaltake Core X31, так как в более компактном корпусе температуры оказались бы заметно выше — это очевидный факт.

При установке одного вентилятора, работающего на вдув, на переднюю панель и одного вентилятора, работающего на выдув, на заднюю системам охлаждения процессора и видеокарты становится заметно легче выполнять свои непосредственные обязанности. Так, подсистема питания графического ускорителя теперь холоднее на 10 градусов Цельсия. Остальным компонентам блока тоже стало заметно комфортнее.

Нагрев комплектующих в корпусе при работе всех вентиляторов

Одного этого примера уже достаточно для констатации очевидной вещи: любая игровая система в Tower-корпусе должна оснащаться вентиляторами. Осталось только определить верное их количество, а также разобраться с правильным расположением этих элементов ПК. Чем мы и займемся далее.

⇡#История одного игрового ПК

Напомню, все эксперименты проводились с типовым игровым системным блоком, собранным в корпусе форм-фактора Midi-Tower. Использование других устройств может повлиять – и, уверен, повлияет – на итоговые результаты. В некоторых случаях — незначительно, в других — кардинально. По мере повествования я постараюсь осветить те или иные моменты, основываясь в том числе и на собственном опыте.

Для проведения этого эксперимента я обратился за помощью к компаниям MSI и Thermaltake, которые любезно предоставили часть комплектующих на тест. Система получилась следующей:

  • Центральный процессор Intel Core i7-8700K, 6 ядер и 12 потоков, 3,7 (4,7) ГГц.
  • Процессорное охлаждение Thermaltake Frio Silent 12.
  • Оперативная память Corsair CMK16GX4M2A2666C16, 16 Гбайт, DDR4-2666.
  • Материнская плата MSI Z370 GAMING M5.
  • Накопители Western Digital WD10EFRX, Western Digital WDS100T1B0A и Team Group T-FORCE CARDEA.
  • Видеокарта MSI GeForce GTX 1080 Ti GAMING X TRIO, 11 Гбайт GDDR5X.
  • Корпус Thermaltake Core X31.
  • Корпусные вентиляторы Thermaltake Riing Plus 12 RGB Radiator Fan TT Premium Edition, два комплекта по три штуки.
  • Блок питания Thermaltake Smart Pro RGB 750W Bronze, 750 Вт.

По факту мы имеем дело с одним из вариантов сборки, которую я называю максимальной. Она, а также другие системы рассматриваются в рубрике «Компьютер месяца».

Intel Core i7-8700K

Важной «деталью» системного блока стал центральный процессор Core i7-8700K. Подробный обзор этого шестиядерника находится здесь, поэтому не буду лишний раз повторяться. Отмечу только, что охлаждение флагмана для платформы LGA1151-v2 является непростой задачей даже для самых эффективных кулеров и систем жидкостного охлаждения.

В систему было установлено 16 Гбайт оперативной памяти стандарта DDR4-2666. Операционная система Windows 10 была записана на твердотельный накопитель Western Digital WDS100T1B0A. С обзором этого SSD вы можете познакомиться здесь.

MSI GeForce GTX 1080 Ti GAMING X TRIO

Видеокарта MSI GeForce GTX 1080 Ti GAMING X TRIO, как видно из названия, оснащена кулером TRI-FROZR с тремя вентиляторами TORX 2.0. По данным производителя, эти крыльчатки создают на 22 % более мощный воздушный поток, оставаясь при этом практически бесшумными. Низкая громкость, как говорится на официальном сайте MSI, обеспечивается в том числе и за счет использования двухрядных подшипников. Отмечу, что радиатор системы охлаждения состоит из шести массивных теплотрубок, а его ребра выполнены в виде волн. По данным производителя, такая конструкция увеличивает общую площадь рассеивания на 10 %. Радиатор соприкасается в том числе и с элементами подсистемы питания. Чипы памяти MSI GeForce GTX 1080 Ti GAMING X TRIO дополнительно охлаждаются специальной пластиной.

Вентиляторы ускорителя начинают вращаться только в тот момент, когда температура чипа достигает 60 градусов Цельсия. На открытом стенде максимальная температура GPU составила всего 67 градусов Цельсия. При этом вентиляторы системы охлаждения раскручивались максимум на 47 % — это примерно 1250 оборотов в минуту. Реальная частота GPU в режиме по умолчанию стабильно держалась на уровне 1962 МГц. Как видите, MSI GeForce GTX 1080 Ti GAMING X TRIO имеет приличный фабричный разгон.

Адаптер оснащен массивным бекплейтом, увеличивающим жесткость конструкции. Задняя сторона видеокарты имеет L-образную полосу со встроенной светодиодной подсветкой Mystic Light. Пользователь при помощи одноименного приложения может отдельно настроить три зоны свечения. К тому же вентиляторы обрамлены двумя рядами симметричных огней в форме драконьих когтей.

Согласно техническим характеристикам, MSI GeForce GTX 1080 Ti GAMING X TRIO имеет три режима работы: Silent Mode — 1480 (1582) МГц по ядру и 11016 МГц по памяти; Gaming Mode — 1544 (1657) по ядру и 11016 МГц по памяти; OC Mode — 1569 (1683) МГц по ядру и 11124 МГц по памяти. По умолчанию у видеокарты активирован игровой режим.

С уровнем производительности референсной GeForce GTX 1080 Ti вы можете познакомиться в этой статье. А еще на нашем сайте выходил обзор MSI GeForce GTX 1080 Ti Lightning Z. Этот графический адаптер тоже оснащен системой охлаждения TRI-FROZR.

MSI Z370 GAMING M5

В основе сборки лежит материнская плата MSI Z370 GAMING M5 форм-фактора ATX. Это слегка видоизмененная версия платы MSI Z270 GAMING M5, обзор которой вышел на нашем сайте прошлой весной. Устройство отлично подойдет для разгоняемых K-процессоров Coffee Lake, так как конвертер питания с цифровым управлением Digitall Power состоит из пяти двойных фаз, реализованных по схеме 4+1. Четыре канала отвечают непосредственно за работу CPU, еще один — за встроенную графику.

Все компоненты цепей питания соответствуют стандарту Military Class 6 — это касается как дросселей с титановым сердечником, так и конденсаторов Dark CAP с не менее чем десятилетним сроком службы, а также энергоэффективных катушек Dark Choke. А еще слоты DIMM для установки оперативной памяти и PEG-порты для установки видеокарт облачены в металлизированный корпус Steel Armor, а также имеют дополнительные точки пайки на обратной стороне платы. Для ОЗУ применена дополнительная изоляция дорожек, а каждый канал памяти разведен в своем слое текстолита, что, по заявлению производителя, позволяет добиться более «чистого» сигнала и увеличить стабильность разгона модулей DDR4.

Из полезного отмечу наличие сразу двух разъемов формата M.2, которые поддерживают установку накопителей PCI Express и SATA 6 Гбит/с. В верхний порт можно установить SSD длиной до 110 мм, в нижний — до 80 мм. Второй порт дополнительно оснащен металлическим радиатором M.2 Shield, который контактирует с накопителем при помощи термопрокладки.

За проводное соединение в MSI Z370 GAMING M5 отвечает гигабитный контроллер Killer E2500, а за звук — чип Realtek 1220. Звуковой тракт Audio Boost 4 получил конденсаторы Chemi-Con, спаренный усилитель для наушников с сопротивлением до 600 Ом, фронтальный выделенный аудиовыход и позолоченные аудиоразъемы. Все компоненты звуковой зоны изолированы от остальных элементов платы токонепроводящей полосой с подсветкой.

Подсветка материнской платы Mystic Light поддерживает 16,8 млн цветов и работает в 17 режимах. К материнской плате можно подключить RGB-ленту, соответствующий 4-пиновый разъем распаян в нижней части платы. Кстати, в комплекте с устройством идет 800-мм удлинитель со сплиттером для подключения дополнительной светодиодной ленты.

Плата оснащена шестью 4-контактными разъемами для подключения вентиляторов. Общее количество подобрано оптимально, расположение — тоже. Порт PUMP_FAN, распаянный рядом с DIMM, поддерживает подключение крыльчаток или помпы с током силой до 2 А. Расположение опять же весьма удачное, так как к этому коннектору просто подключить помпу и от необслуживаемой СЖО, и от кастомной системы, собранной вручную. Система ловко управляет в том числе «карлсонами» с 3-контактным коннектором. Частота регулируется как по количеству оборотов в минуту, так и по напряжению. Есть возможность полной остановки вентиляторов.

Наконец, отмечу еще две очень полезные «фишки» MSI Z370 GAMING M5. Первая — это наличие индикатора POST-сигналов. Вторая — блок светодиодов EZ Debug LED, расположенный рядом с разъемом PUMP_FAN. Он наглядно демонстрирует, на каком этапе происходит загрузка системы: на стадии инициализации процессора, оперативной памяти, видеокарты или накопителя.

Технологии неустанно совершенствуются, специализированные программы и новейшие игры требуют всё более и более мощных компьютеров. Процессоры, видеокарты и другие компоненты компьютера ежегодно модернизируются, а это приводит и к выделению большего тепла. Чрезмерный нагрев может грозить зависаниями, поломке отдельных элементов и усиливающимся гулом кулеров. Скапливающаяся в корпусе пыль лишь усугубляет ситуацию.

На помощь приходят вентиляторы. Сегодня они практически всегда ставятся на блок питания, на процессор и на мощные видеокарты. Но зачастую этого бывает недостаточно: эти вентиляторы обслуживают только свою деталь, выбрасывая горячий воздух в корпус. Этот процесс не только снижает эффективность кулеров, которые засасывают вновь тот же самый горячий воздух, но и приводит к нагреву других частей компьютера. Поэтому в корпусе необходима должная вентиляция, чтобы снаружи воздух подавался, а изнутри — выдувался. Именно для этого нужны вентиляторы для корпуса.

К сожалению, для многих это вопрос суммы, оставшейся со сдачи. Мало того, при выборе корпусного вентилятора покупатели часто ориентируются только на его размер. Это в корне неверно, так как неправильно подобранный вентилятор приведёт к лишнему раздражающему шуму, да и прослужит очень мало. Если же подходить к вопросу серьёзно, необходимо разобраться в параметрах корпусных вентиляторов.

Чем различаются вентиляторы для корпуса

Размер вентилятора

Речь идёт о физических размерах каркаса, помогающих ориентироваться при подборе вентиляторов к различным комплектующим и к корпусу. Это важнейшая характеристика, потому что при несоответствии параметрам корпуса вентилятор просто не получится вставить. Существует множество стандартных размеров вентиляторов: от 25х25 мм до 200х200 мм.

Вентиляторы размером от 25х25 до 70х70 мм нужны для охлаждения небольших участков, например, северного или южного моста на материнской плате. В связи со спецификой использования выбор таких вентиляторов не столь велик. Применяются в тонких серверах для продува корпуса на высоких оборотах.

Вентиляторы размером 80х80 и 92х92 мм являются стандартными для небольших корпусов. Их можно использовать, к примеру, в офисных компьютерах. Такие вентиляторы довольно популярны и распространены. Также их используют для особых целей, например, охлаждения материнских плат небольших размеров. Примерно 12-15 лет назад использовались в стандартных ATX корпусах практически повсеместно.

Вентиляторы размером 120х120 и 140х140 мм используют на больших корпусах. Они отлично подойдут для мощных компьютеров, например, игровых. Нужно учитывать, что чем больше вентилятор, тем меньшая скорость вращения ему требуется для создания определённого воздушного потока. Следовательно, большие вентиляторы шумят ощутимо меньше маленьких.

Вентиляторы размером 150х140 и 200х200 мм используются, когда в большом корпусе требуется дополнительный мощный поток воздуха. Они обычно ставятся на верхнюю или боковую часть корпуса. Выбор моделей такого размера не столь велик.

Также бывают вентиляторы нестандартных размеров, когда диаметр вентилятора больше расстояния между отверстиями крепления (как на картинке ниже). Учитывайте это в корпусе с плотной компоновкой вентиляторов. Два таких вентилятора с креплением 120х120 мм, но диаметром крыльчатки 140 мм не получиться поместить рядом друг с другом в корпусе с местом под крепление 120 мм вертушек.

Максимальная и минимальная скорость вращения

Скорость вращения измеряется в количестве оборотов за одну минуту. При одинаковых размерах каркаса и лопастей вентилятор с большей скоростью вращения будет охлаждать системный блок эффективнее. Средней скоростью вращения считается: у вентиляторов размером 80 мм — 2000–2700 об/мин, 90–92 мм — 1300–2500 об/мин, 120 мм — 800–1600 об/мин. Вентиляторы со скоростью вращения больше 3000 об/мин используются для специфических целей, например, для многих жидкостных систем охлаждения.

Различие минимальной и максимальной скорости вращения вентилятора указывает на возможность её регулировки. Однако стоит отметить, что чем выше скорость вращения, тем больше шума издаёт вентилятор.

Максимальный и минимальный уровень шума

Вентилятор крутится, создаётся воздушный поток, происходит трение деталей — следствием всего этого является шум. Шумность измеряется в децибелах — дБ. Чем громче вентилятор, тем, согласитесь, утомительнее рядом с ним работать, поэтому лучше выбирать наиболее тихие модели. Оптимален уровень шума не более 30–35 дБ.

Вообще, самый сложный аспект при выборе вентилятора, это найти компромисс между скоростью вращения, силой воздушного потока и шумом. Дорогие и наиболее эффективные вентиляторы славятся своим низким уровнем шума при достаточно мощном воздушном потоке.

Регулировка оборотов

Регулировать количество оборотов вентилятора в минуту нужно для того, чтобы оптимизировать работу охлаждения. К примеру, в корпусе довольно низкая температура, а вентилятор крутится на скорости 2500 об/мин — есть смысл уменьшить количество его оборотов, чтобы понизить уровень шума и энергопотребление. Если же в корпусе наоборот слишком высокая температура, скорость вентилятора лучше увеличить. При выборе вентилятора стоит учитывать параметры материнской платы и тип разъёма питания. Регулировка скорости вращения крыльчатки вентилятора может осуществляться несколькими способами.

Первый — автоматическая регулировка. В этом варианте скорость вентилятора управляется материнской платой автоматически или через команды пользователя (например, с помощью специального устройство, устанавливаемого на корпусе компьютера — реобаса). Материнская плата сама анализирует степень нагрева комплектующих ПК.

Второй способ — плавная ручная регулировка. В этом варианте для регулировки скорости пользователю нужно покрутить ручку управляющего резистора на специальном блоке. При этом скорость вращения вентилятора меняется плавно, то есть её можно уменьшить или увеличить как на большие значения, так и на совсем маленькие. Проблема ручной регулировки, это риск перегрева ПК, если не следить за температурой компонентов. При недостаточной скорости вращения воздух внутри корпуса будет закономерно сильнее нагреваться, что может повлечь за собой вылеты и зависания.

Третий способ — ступенчатая ручная регулировка. Она выполнена в виде специальных переходников, подключив через которые вентилятор, пользователь может изменить скорость его вращения. При этом нужно учесть, что количество ступеней, а значит, и количество оборотов будет строго фиксировано.

Тип разъёма питания

Сегодня существует четыре типа подключения вентиляторов: 2-pin, 3-pin, 4-pin и molex.

2-pin — специфический разъем. Применяется в блоках питания, а в обычных ПК на современных материнских платах не встречается.

3-pin — это подключение к материнской плате с возможностью наблюдения за скоростью вращения вентилятора через материнскую плату. Стоит отметить, что 3-pin кабели можно подключать и к 4-pin разъёму.

4-pin — это подключение к материнской плате с возможностью автоматической регулировки скорости вращения вентилятора в зависимости от температуры в системе. Такие вентиляторы обычно стоят на процессорах и видеокартах. Возможно подключение 4-pin кабеля к 3-pin разъёму, но при этом функция автоматического регулирования скорости вращения будет недоступна.

Molex — это подключение напрямую к блоку питания с возможностью ручной регулировки скорости вращения вентилятора.

Тип подшипника

Как вы знаете, подшипники нужны для кручения вентилятора вокруг втулки. Так как это основное место трения деталей, подшипник наиболее подвержен разрушению, а также именно его качество отвечает за уровень шума. В корпусных вентиляторах устанавливается один из четырёх видов подшипников: скольжения, качения, гидродинамический и с магнитным центрированием.

Подшипник скольжения — это простейшая конструкция подшипника, в котором трутся две полированных поверхности. Это наиболее дешёвый и тихий вариант, однако он отличается небольшим временем службы и ухудшением работы при высоких температурах. Также в силу конструкции его можно использовать только в вертикальном положении.

Подшипник качения или шарикоподшипник — более сложная конструкция, в которой предусмотрено специальное кольцо с шариками, размещённое между подвижной частью (крепящейся к оси), и неподвижной (прикреплённой к основанию). Катящиеся шарики обеспечивают меньшее трение, чем в подшипниках скольжения, и более высокую надёжность. Ресурс таких вентиляторов может достигать 15000 часов непрерывной работы, их можно использовать при высоких температурах и в любом положении. Главный минус такой конструкции — более высокий уровень шума из-за трения движущихся частей подшипника, особенно на высоких оборотах.

Гидродинамический подшипник — это по сути усовершенствованный подшипник скольжения. Он заполнен специальной жидкостью, создающей прослойку, по которой скользит подвижная часть подшипника. Таким образом удаётся избежать непосредственного контакта между твёрдыми поверхностями и значительно снизить трение. Гидродинамические подшипники более долговечны в сравнении с их предшественниками, а также практически бесшумны.

Подшипник с магнитным центрированием основаны на принципе магнитной левитации. Основа конструкции — вращающаяся ось, «подвешенная» в магнитном поле. Таким образом удаётся избежать контакта между твёрдыми поверхностями и ещё больше снизить трение. Это самый совершенный, долговечный и бесшумный тип подшипников. Его минус — высокая стоимость.

Воздушный поток на максимальной скорости

Эта характеристика — одна из самых важных при выборе вентилятора для корпуса. Она обозначает число кубических футов воздуха в минуту, которые способен прогнать через себя вентилятор системы охлаждения. Чем выше это число, тем эффективней будет охлаждение. Воздушный поток зависит от многих факторов, таких как диаметр вентилятора, размер лопастей, скорость вращения, материал, из которого изготовлен вентилятор. При различных комбинациях этих параметров стоит обращать особенное внимание именно на воздушный поток.

Дизайн

Помимо всего прочего, вентиляторы различаются внешним видом: от цвета лопастей до наличия подсветки. Конечно, если ваш компьютер спрятан глубоко под столом, вряд ли это будет иметь для вас значение. Но для профессионалов, особенно геймеров, обустраивающих своё игровое пространство, эта характеристика может сыграть свою роль.

Критерии выбора

Вентиляторы для корпуса играют важную роль в продевании срока службы компьютера. Но выбрать их не так просто, так как для различных целей подойдут разные модели. Мы распределили вентиляторы на группы, исходя из потребностей пользователя.

Читайте также:  Автономный шагомер на руку
Понравилась статья? Поделить с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock detector