Устройство защиты от перегрузок

В конструкцию всех современных бытовых приборов входят чувствительные электронные компоненты. В результате, несмотря на все положительные качества и высокие технические характеристики, данное оборудование крайне отрицательно реагирует на перепады напряжения. Подобные скачки присутствуют во всех электрических сетях и полностью устранить их практически невозможно. Поэтому, чтобы сберечь дорогостоящую технику, требуется устройство защиты от перенапряжения.

Причины возникновения и опасность скачков напряжения

В момент перепада напряжения в электрических сетях его амплитуда изменяется на короткий промежуток времени. После этого она быстро восстанавливается с параметрами, приближенными к начальному уровню.

Подобный импульс электрическим током продолжается буквально в течение нескольких миллисекунд, а его возникновение обусловлено следующими причинами:

  • Грозовые разряды. Вызывают скачки напряжения до нескольких киловольт, которые не сможет выдержать ни один прибор. Подобные перепады нередко становятся причиной отключения сети и пожара.
  • Перенапряжение, вызываемое процессами коммутации, когда подключаются или отключаются потребители с высокой мощностью.
  • Явление электростатической индукции при подключении электросварки, коллекторного электродвигателя и другого аналогичного оборудования.

Опасность последствий от перенапряжений наглядно отражается на рисунке, где грозовой и коммутационный импульсы существенно отличаются от номинального сетевого напряжения. Изоляционный слой в большинстве проводов рассчитан на значительные перепады и пробоев обычно не случается. Часто импульс действует очень недолго и напряжение, проходя через блок питания и стабилизатор, просто не успевает подняться до критического уровня.

Иногда слой изоляции сети 220 В может не выдержать возрастающего напряжения. В результате случается пробой, сопровождающийся появлением электрической дуги. Для потока электронов образуется свободный путь в виде микротрещин, а проводником служат газы, наполняющие микроскопические пустоты. Этот процесс сопровождается выделением большого количества тепла, под действием которого токопроводящий канал расширяется еще больше. Из-за постепенного нарастания тока, срабатывание защитной автоматики немного запаздывает, и этих нескольких мгновений вполне хватает, чтобы вывести из строя в частном доме всю электропроводку.

Особую опасность представляют повышенное и пониженное напряжение, находящееся в таком состоянии долгое время. В основном это происходит по причине аварийных ситуаций, которые требуется устранить, чтобы ток пришел в норму. Других способов нормализации и каких-либо специальных приборов, защищающих от этого явления, не существует.

Длительные перенапряжения и провалы из-за недостатка напряжения

Как правило, причиной длительных перенапряжений в сетях становится обрыв нулевого провода. В этом случае нагрузка на фазные жилы распределяется неравномерно, что приводит к перекосу фаз, когда разность потенциалов смещается к проводнику с максимальной нагрузкой.

Таким образом, неравномерный трехфазный ток, воздействуя на нулевой кабель, находящийся без заземления, способствует концентрации на нем избыточного напряжения. Этот процесс будет продолжаться до полного устранения неисправности или до тех пор, пока линия окончательно не выйдет из строя.

Другим опасным состоянием сети является провал или недостаток напряжения. Подобные ситуации очень часто возникают в сельской местности. Суть явления заключается в падении напряжения ниже допустимой величины. Такие проседания представляют серьезную опасность и реальную угрозу для оборудования. Многие современные приборы оборудованы несколькими блоками питания и недостаточное напряжение приводит к кратковременному выключению одного из них.

В результате, последует незамедлительная реакция электронной аппаратуры в виде ошибки, выведенной на дисплей, и полной остановки рабочего процесса. Если подобная ситуация сложилась с отопительным котлом в зимнее время года, тогда отопление дома будет прекращено. Устранить проблему возможно с помощью стабилизатора, фиксирующего такие проседания и поднимающего напряжение до номинальной величины.

Виды и принцип действия защитных устройств

Защита электрической сети от скачков напряжения может осуществляться разными способами. Наиболее распространенными и эффективными считаются следующие:

  • Молниезащитные системы.
  • Стабилизаторы напряжения.
  • Датчики повышенного напряжения, используемые совместно с УЗО. В случае неполадок они вызывают токовую утечку, под влиянием которой произойдет срабатывание защитного устройства.
  • Реле перенапряжения.

Похожие функции выполняют блоки бесперебойного питания, с помощью которых компьютеры подключаются к домашней сети. Данные приборы не защищают от перенапряжений, они действуют как аккумуляторы, позволяя выполнить нормальное выключение компьютера и сохранить нужную информацию в случае внезапного отключения света. Стабилизировать напряжение это устройство не может.

Под действием молнии возникают электрические импульсы. Защита от их негативного воздействия осуществляется путем установки грозозащитного разрядника, используемого совместно с УЗИП – устройством защиты от импульсных перенапряжений. Он также известен, как автомат для защиты от перенапряжения. Кроме того, необходимо обеспечить дополнительную безопасность от электронного потока с параметрами, отличающимися от рабочих характеристик данной сети. Для этих целей используются специальные датчики, используемые с УЗО, и реле защиты от перенапряжения. Назначение и принцип работы данных устройств не такие, как у стабилизатора.

Основной функцией обоих компонентов является прекращение подачи электрического тока, когда перепад напряжения превысит максимальное значение, определенное паспортными техническими показателями этих устройств. После того как параметры сети нормализуются, реле включается самостоятельно и возобновляет подачу тока.

Молниезащита от перенапряжений

Защитные системы против грозовых разрядов могут быть устроены разными способами, в зависимости от технических условий.

1.

Первый вариант предполагает внешнюю молниезащиту, устанавливаемую дома (рис. 1). В этом случае допускается максимальная сила удара молнии непосредственно в элементы самой системы. Расчетная величина такого тока составит примерно 100 кА. Защититься от мощного импульса при перегрузке возможно с помощью комбинированного УЗИП, который устанавливается внутрь вводного электрического щита и действует как выключатель. Одно такое устройство защитит все оборудование, находящееся в доме.

В другом случае внешняя молниезащита отсутствует, а напряжение подается к дому по воздушной линии (рис. 2). Молния ударяет в опору ЛЭП с расчетным током, проходящим через УЗИП, величиной тоже 100 кА. Защитить электрооборудование от мощного импульса помогут специальные устройства с защитой, размещаемые во вводном щите, на стене здания или на самом столбе, в месте ответвления линии. При использовании распределительного щита, защита организуется по такой же схеме, как и в предыдущем варианте.

2.

Если же УЗИП устанавливается на столбе, то нецелесообразно применять дифференциальные устройства 3 в 1, поскольку на участке от столба до здания возможно появление наведенных, то есть, повторных перенапряжений. Поэтому будет вполне достаточно прибора класса 1+2, а при расстоянии до дома свыше 60 метров, внутри дома в главный щит дополнительно устанавливается УЗИП 2-го класса.

И, наконец, третья ситуация, когда питание дома подается через подземный кабель, в том числе и в сети 380 В, а внешняя молниезащита тоже отсутствует (рис. 3). Максимум, что может случиться – появление наведенных импульсных перенапряжений. Ток молнии не попадет в сеть даже частично. Величина расчетного импульсного тока составляет около 40 кА. Чтобы защитить электрооборудование достаточно УЗИП 2-го класса, установленного во вводный электрический щит.

3.

Ограничители перенапряжений

Рассматривая вопросы защиты от перенапряжения сети, следует отметить, что данную функцию в первую очередь должны выполнять организации, отвечающие за электроснабжение. Именно они устанавливают на ЛЭП необходимые защитные устройства. Однако, как показывает практика, это выполняется далеко не всегда, и проблемы защиты дома от перенапряжений вынуждены решать сами потребители.

Защита от перенапряжения в сети на подстанциях и воздушных ЛЭП осуществляется с помощью ОПН – нелинейных ограничителей перенапряжения. Основной этих устройств является варистор, имеющий нелинейные характеристики. Его нелинейность состоит в изменяющемся сопротивлении элемента в соответствии с величиной приложенного напряжения.

Когда электрическая сеть работает в нормальном режиме, а напряжение имеет свое номинальное значение, ограничитель напряжения в это время обладает большим сопротивлением, препятствующим прохождению тока. Если же при ударе молнии возникает импульс перенапряжения, наступает резкое снижение сопротивления варистора до минимального значения и вся энергия импульса уходит в контур заземления, соединенный с ОПН. Таким образом, обеспечивается безопасный уровень напряжения, и все оборудование оказывается надежно защищенным.

Читайте также:  Туя и кипарисовик отличия

Для электрических сетей дома или квартиры существуют компактный блок модульных ограничителей перенапряжений, не занимающих много места в распределительном щитке. Они работают точно так же, как и в линиях электропередачи. Эти приборы подключены к заземляющему контуру или к рабочему заземлению, по которому уходят опасные импульсы.

Другие виды защитных устройств

Существуют и другие варианты защиты от перенапряжения в сети. Они широко применяются в быту и считаются одними из наиболее эффективных средств.

Сетевые фильтры

Отличаются простой конструкцией и доступной стоимостью. Несмотря на свою малую мощность, это устройство вполне способно защитить оборудование при скачках, достигающих 380 вольт и даже 450 вольт. Более высокие импульсы фильтр не выдерживает. Он просто сгорает, сохраняя в целости дорогостоящую электронику.

Данное устройство защиты от перенапряжения оборудуется варистором, играющим ключевую роль в обеспечении защиты. Именно он сгорает при импульсах свыше 450 В. Кроме того, фильтр надежно защищает от помех высокой частоты, возникающих при работе сварки или электродвигателей. Еще одним компонентом служит плавкий предохранитель, срабатывающий при коротких замыканиях.

Стабилизаторы

В отличие от сетевых фильтров, эти устройства позволяют выполнить нормализацию напряжения дома и привести его в соответствие с номиналом. Путем регулировок устанавливаются граничные пределы от 110 до 250 вольт, и на выходе устройства получаются требуемые 220 В. В случае скачков напряжения и выходе его за допустимые пределы, стабилизатор автоматически отключает питание. Подача напряжения возобновляется лишь после приведения сети к нормальному рабочему режиму.

Что лучше сетевой фильтр или стабилизатор напряжения. В определенных условиях, например, за городом или в сельской местности, стабилизаторы являются наиболее эффективной защитой от перенапряжения, выступают в качестве единственного варианта, способного выровнять напряжение до установленных норм.

Все стабилизирующие устройства, используемые в быту, разделяются на два основных типа. Они могут быть линейными, когда к ним подключается один или несколько бытовых приборов, или магистральными, устанавливаемыми на вводе сети в квартире или во всем здании.

Срок службы светодиодных систем для наружного освещения может быть сильно сокращен из-за импульсных перенапряжений в их силовых цепях питания. Решить эту проблему помогут специальные защитные приборы от компании Littelfuse, в частности, SPD-модули на основе варисторных сборок.

Светодиодное освещение стремительно вытесняет традиционные источники света. Более высокий КПД и возможность улучшения освещения при помощи вторичной оптики (линзы и отражатели) делают применение LED-светильников хорошо оправданным как с технологической, так и с экономической точек зрения.

Несмотря на существенную экономию энергии, затраты на покупку и установку светодиодной осветительной системы достаточно велики по сравнению со старыми световыми технологиями. Они могут окупиться только в случае гарантированного бесперебойного функционирования светодиодного освещения в течение 3…5 лет. Срок эксплуатации светильников может сильно сократиться под влиянием импульсных перенапряжений в силовых цепях питания, вызванных ударом молнии, сбоем в электросети или искрением контактов городского электрического транспорта. Особенно таким импульсам могут быть подвержены светильники, расположенные на открытых участках местности, смонтированные на высоких опорах. Эти импульсы значительно сокращают срок службы светильников, что значительно снижает экономический эффект от их применения.

В соответствии с требованиями нормативно-технических документов, все уличные светильники заземлены. При близком ударе молнии в землю происходит «растекание» заряда молнии, что вызывает разность потенциалов между различными точками заземления. Помимо заземления, для защиты электронной начинки осветительного оборудования применяются специальные защитные компоненты и приборы. Одним из производителей таких приборов является компания Littelfuse, которая, помимо иных защитных компонентов, производит и высококлассные средства защиты LED-светильников.

При питании прибора от сети переменного тока целостность его электрической цепи может быть нарушена перенапряжением. Некоторые виды перенапряжений являются неизбежными при эксплуатации линий, так как следуют из физических свойств самой линии и природы протекающих в них процессов.

Причины перенапряжения могут быть

  • Внутреннего происхождения:
  • заземление линии;
  • зануление линии;
  • изменение нагрузки;
  • включение и выключение линии, в частности – автоматическое повторное включение;
  • перемещающиеся (неустойчивые) дуговые короткие замыкания на линии;
  • резонанс и феррорезонанс в сети (например, при смещении и колебании нейтрали трехфазной сети).
  • Внешнего происхождения:
    • атмосферные явления;
    • молнии, в том числе – шаровые.
    • В момент, когда поблизости от светодиодного прибора включается или выключается электрическое оборудование, перенапряжение, вызванное переходными процессами (рисунок 1), может вызвать скачки напряжения. Также причиной перенапряжения может быть молния, что особенно актуально для уличного освещения.

      Рис. 1. Перенапряжения на линии питания переменного тока из-за переходного процесса

      Светильники могут выйти из строя и из-за так называемого непрямого удара молнии (рисунок 2), когда ее разряд на расстоянии нескольких десятков или сотен метров от прибора генерирует электромагнитные поля, которые индуцируют импульсы порядка тысяч вольт в электросети.

      Рис. 2. Воздействие непрямого удара молнии

      Непрямым ударам молнии подвержены как открытые (воздушные), так и подземные силовые линии электропитания.

      Для России весьма актуальна защита от разрядов молний. На рисунке 3 представлена мировая карта частоты ударов молний.

      Рис. 3. Глобальная карта частоты ударов молний/км2/год

      Больше всего ударам молний подвержена тропическая зона, а наиболее грозобезопасными являются Арктическая и Антарктическая – всего 0,1…1 удар молний на км2 в год.

      Как видно на карте, на территории нашей страны тоже есть районы с высокой частотой гроз, где удары молний случаются до 15…20 раз в год на 1 км2. В этих местах вероятность выхода из строя электрооборудования и светодиодных ламп особенно велика.

      Светильник чувствителен к повреждению как в дифференциальном, так и в общем режиме.

      Дифференциальный режим – большие скачки напряжения и тока на входе источника питания светильника между фазой и нейтралью, которые могут повредить компоненты цепи.

      Обычный режим – большие скачки напряжения и тока на входе источника питания светильника между фазой и землей или нейтралью и землей, которые могут повредить его изоляцию и даже сами светодиодные линейки, пробив изоляцию между светодиодной платой и радиатором.

      Компания Littelfuse производит устройства защиты от импульсных перенапряжений (УЗИП) для защиты уличных и промышленных LED-светильников, которые удовлетворяют требованиям UL1449/IEC61643-11. В зависимости от предъявляемых требований к защите источника питания могут применяться модули разной мощности, и, соответственно, величины максимального пропускаемого импульсного тока: 20 кА у LSP10 и 10 кА у LSP05 с максимальной защитой от перенапряжений до 20 кВ. УЗИП выполнены из варисторов с термозащитным элементом серии TMOV или TMOV25S. Данный тип варисторов выходит из строя при достижении критической температуры корпуса без возгорания или взрыва элемента. Существует две версии: для подключения модулей в параллель и последовательно.

      Преимущества:

      • привлекательная стоимость;
      • пожаробезопасность;
      • простая замена компонентов, вышедших из строя;
      • герметичность (IP66);
      • компактные размеры (48х48х30 мм).

      Применение:

      • уличное освещение;
      • промышленное освещение;
      • светофоры;
      • посадочные огни аэродромов.

      Мировые стандарты защиты светодиодного освещения

      Во многих странах разработаны или разрабатываются стандарты защиты для светодиодного освещения. С развитием светодиодного освещения меняются и стандарты его защиты – как правило, они становятся все более жесткими.

      Безопасность определяется максимальной токовой защитой, в частности, от короткого замыкания, и защитой от перегрузки. В Северной Америке UL8750 является стандартом безопасности светодиодного оборудования, относящегося к бытовым светодиодным лампам и уличным светильникам. Целью этого требования является свести к минимуму риск поражения электрическим током и снизить возможность возникновения пожара. Оно устанавливает нормы эксплуатации устройства защиты от перегрузок по току, чтобы прервать или ограничить ток во время короткого замыкания или состояния перегрузки. Плавкие предохранители являются надежной технологией защиты от таких угроз и, соответственно, наиболее часто используются.

      За пределами США стандартом для светодиодных драйверов (источников питания, стабилизированных по току) являются спецификации IEC/EN 61347 и IEC/EN 62031. В Европе требования к защите от перегрузок по перенапряжению и току определяются такими документами как IEC/EN 61547, которые базируются на IEC/EN 61000-4-5. В них разграничиваются различные уровни пиков тока на основе 8 кА/20 мкс короткого замыкания и сочетания формы волны. Для применений в наружном освещении эти уровни могут варьироваться от 4 кВ/2 кА во многих азиатских странах до 10 кВ/5 кА в Европе.

      Читайте также:  Укладка плит перекрытия видео

      В США очень важным стандартом для проверки защиты от скачков тока является ANSI/IEEE C.62.41-2002. Этот стандарт определяет две категории защиты освещения в зависимости от местоположения и связанных с ним требований к испытаниям, переходным перенапряжениям. В зависимости от места применения осветительного оборудования, например, в помещении или на улице, определяется категория. Скажем, на открытом воздухе светильники подпадают под категорию С (высокий или низкий тест требований) – они гораздо более подвержены ударам молний и, следовательно, будут подлежать испытаниям защиты от скачков тока. В таблице 1 представлены сводные показатели уровней перенапряжений IEEE C.62.41-2002 и их применение.

      Таблица 1. Сводные показатели уровней перенапряжения и требования к испытаниям IEEE C.62.41-2002 для светодиодных светильников

      Категория
      местоположения
      Макс. имп. напряжение, кВ Макс. имп. ток, кA Источник Применение
      1,2/50 мкс 8/20 мкс Импеданс, Ом
      A (в закрытом помещении) 6 0,5 12 Закрытые помещения, жилые помещения, офисы
      B 6 3 2 Уличное освещение возле зданий
      C (низкий) 6 3 2 Коммерческое промышленное освещение, освещение складов и гаражей
      C High (на открытом воздухе) 20 10 2 Уличное освещение, парковки, освещение на открытом воздухе

      Плавкие предохранители, MOVs и TVS-диоды производства компании Littelfuse имеют важное значение в обеспечении защиты LED-ламп. Они соответствуют главным нормативным стандартам и нормам безопасности. В настоящее время Соединенные Штаты являются страной, где наиболее проработаны стандарты защиты освещения, эффективности и безопасности для коммерческих помещений, уличного освещения, промышленного и складского. Существуют международные стандарты, которые определяются Международной электротехнической комиссией (МЭК), где указаны нормы защиты от перенапряжений, условия проведения тестирования в соответствии с МЭК 61000-4-5. Кроме того, часть IEC61547 «Оборудование для освещения общего назначения» требует тестирования на электромагнитную совместимость (ЭМС).

      Все стандарты защиты можно разделить на две группы: стандарты безопасности, описывающие необходимую защиту от перегрузок по току, и стандарты, определяющие надежность и регламентирующие требования к устройству выдерживать перенапряжения.

      Защита светодиодных осветительных систем с помощью изделий Littelfuse

      Компания Littelfuse предлагает комплекты средств защиты на линии переменного тока, а также защиту от переходных процессов на стороне постоянного тока. Эти средства защиты могут быть использованы как на этапе производства светодиодного освещения, так и при модернизации для соответствия светильников отраслевым стандартам. На рисунке 4 изображена принципиальная схема устройства светодиодного светильника с защитой от перенапряжений, показаны основные блоки и компоненты. На этом рисунке показано, как предохранитель Littelfuse, соединенный последовательно с фазой, обеспечит безопасность и защитит от короткого замыкания и перегрузки по току. Эти предохранители доступны в широком диапазоне форм-факторов, рассчитаны на разную силу тока, напряжение и способ монтажа, чтобы обеспечить гибкость конструкции для инженеров-проектировщиков. SPD-модули спроектированы специально для защиты светодиодных светильников (рисунок 5) и выпускаются компанией Littelfuse в двух сериях: LSP05 (таблица 2) и LSP10 (таблица 3).

      Рис. 4. Типовая схема драйвера LED-светильника с защитой от перенапряжения

      Таблица 2. Характеристики SMD-модулей серии LSP05

      Наименование Uраб. AC, В Uвкл, В Iпик. ном. при 8/20 мкс, А Iпик. макс. при 8/20 мкс, А Uогр.ср. при 8/20 мкс, В Uогр. макс. при 8/20 мкс, В Tраб., °С
      LSP05120P 120 150 10000 5000 L-N: 680 800 -45…85
      L-G: 680
      N-G: 630
      LSP05240P 240 275 L-N: 1100 1200
      L-G: 1100
      N-G: 1100
      LSP05277P 277 320 L-N: 1270 1400
      L-G: 1270
      N-G: 1220
      LSP05347P 347 420 L-N: 1600 1700
      L-G: 1600
      N-G: 1580
      LSP05480P 480 510 L-N: 1780 1900
      L-G: 1780
      N-G: 1730
      LSP05240LLP L-L: 240 L-L: 275 L-L: 1100 L-L: 1200
      L-N/G: 120 L-N/G: 150 L-N/G: 680 L-N/G: 800
      LSP05240LLP L-L: 480 L-L: 510 L-L: 1780 L-L: 1900
      L-N/G: 277 L-N/G: 320 L-N/G: 1270 L-N/G: 1400

      Основные характеристики модулей:

      • наличие в составе мощной варисторной сборки для ограничения высокоэнергетических разрядов; номинальный ток ограничения до 5 кА для LSP05 и до 10 кА для LSP10;
      • максимальный ток ограничения до 10 и 20 кА для LSP05 и LSP10 соответственно;
      • предотвращение перегрева варисторной сборки с помощью встроенных термопредохранителей;
      • рабочее напряжение: 120…480 В;
      • герметичное исполнение IP66;
      • рабочий температурный диапазон: -45…85°C;
      • соответствие требованиям IEC/EN 61347 и IEEE C62.41.2.

      Таблица 3. Характеристики SMD-модулей серии LSP10

      Наименование Uраб. AC, В Uвкл., В Iпик. ном. при 8/20 мкс, А Iпик. макс. при 8/20 мкс, А Uогр. ср. при 8/20 мкс, В Uогр. макс. при 8/20 мкс, В Tраб, °С
      LSP10120P 120 150 20000 10000 L-N: 740 900 -45…85
      L-G: 740
      N-G: 670
      LSP10240P 240 275 L-N: 1130 1200
      L-G: 1130
      N-G: 1060
      LSP10277P 277 320 L-N: 1330 1400
      L-G: 1330
      N-G: 1260
      LSP10347P 347 420 L-N: 1750 1900
      L-G: 1750
      N-G: 1680
      LSP10480P 480 510 L-N: 2020 2100
      L-G: 2020
      N-G: 1960
      LSP10240LLP L-L: 240 L-L: 275 L-L: 1130 L-L: 1200
      L-N/G: 120 L-N/G: 150 L-N/G: 740 L-N/G: 900
      LSP10480LLP L-L: 480 L-L: 510 L-L: 2020 L-L: 2100
      L-N/G: 277 L-N/G: 320 L-N/G: 1330 L-N/G: 1400

      Рис. 5. SMD-модули серии LS

      Встроенная варисторная сборка использует мощные и высоконадежные варисторы, которые позволяют ограничивать выбросы даже очень больших энергий.

      Уровень токов и напряжений отвечает самым жестким требованиям стандартов IEC/EN 61347 и IEEE C62.41.2. По этой причине основными приложениями модулей серий LSP являются уличное и дорожное освещение, прожекторы подсветки зданий, стадионов и бассейнов, светофоры, промышленное освещение и так далее.

      Несмотря на то, что большинство источников питания для светодиодного освещения имеет встроенную защиту, значительные скачки напряжения на входе светодиодного источника питания могут привести к выходу из строя его компонентов. Как правило, в источниках питания используют минимальную защиту, которая обеспечивает соответствие стандартам безопасности: плавкий предохранитель на входе и небольшой, стоящий за ним, варистор стандартной (маломощной) серии и небольшого размера – не более 10 или 14 мм. В реальных условиях эксплуатации такой варистор не может абсорбировать достаточное количество энергии входного импульса перенапряжения, чтобы защитить компоненты в источнике питания. Внешний модуль защиты от перенапряжения ограничит пики напряжения и ток, чтобы избежать губительных для светильника процессов.

      Необходимо отметить некоторые особенности выбора модуля защиты:

      • рабочее напряжение должно быть больше или равно максимально допустимому напряжению сети;
      • напряжение срабатывания должно быть больше максимально допустимого напряжения сети;
      • напряжение ограничения должно быть меньше, чем уровень допустимых помех;
      • напряжение ограничения модуля должно быть меньше, чем у других защитных элементов в блоке питания.

      Последний пункт объясняется тем, что защитные элементы в блоке питания, например, те же варисторы, будут срабатывать до включения защитного модуля и в результате этого выйдут из строя быстрее, чем он.

      Заключение

      Стремительный рост развития светодиодного освещения и его повсеместное применение диктуют необходимость использования защитных приборов. Правильно выбранное устройство защиты от перегрузок по току и напряжению, дает ряд преимуществ, начиная с повышенной надежности конструкции и заканчивая низкими расходами на гарантийное обслуживание. Компания Littelfuse предлагает множество продуктов и решений, которые смогут удовлетворить различным требованиям разработчиков.

      Довольно часто происходят поломки электрической бытовой техники, ведь любой электротехнический агрегат при создании рассчитывается на работу с определенным уровнем электроэнергии, т.е. на конкретные показатели силы и напряжения тока в сетях подключения. Поэтому при превышении этих норм может случиться аварийная ситуация.

      Использование дорогостоящей домашней техники, агрессивные природно- атмосферные явления, не слишком высокий уровень прокладки линий электропередач делает жизненно необходимым для собственников квартир и домов принятие мер по защите от перенапряжения электросетей в частном доме и минимизации возможных последствий.

      Читайте также:  Белая лестница с темными ступенями

      Откуда возникает перенапряжение

      Планировка и строительство многих многоэтажек еще пару десятков лет назад производилась без прицела на сегодняшнее многообразие бытового электрооборудования: микроволновки, многокамерные холодильники, утюги высокой мощности и другие приборы, имеющие электрическое питание. Поэтому максимумы потребления электричества по утрам и вечерам пагубно влияют на работу всей электросети в любом жилище.

      Электричество, текущее по кабелю или проводу, неспособному выдерживать такую нагрузку, способствует их ненормальному нагреву в дневные часы и охлаждению в вечерние. В силу законов физики, проводник ослабевает, поскольку он делается то шире, то уже. Контакты в щитке на первых этажах или в едином вводно-распределяющем устройстве в доме заметно ослабевают. Также нулевые контакты могут отгореть, что приводит к перепаду напряжения от 110 до 360 вольт на всех этажах, выше этажа с перегоревшими контактами.

      Перенапряжение в электросети может произойти в результате попадания молниевого разряда в линию электропередач, подстанцию или элементы дома, при этом сила тока просто огромная, порядка 200 килоампер. При попадании в молниеприемник и дальнейшем прохождении молнии по контуру заземления в проводниковых материалах возникает электродвижущая сила, измеряемая в киловольтах.

      Также вызвать резкий скачок напряжения могут сварочные работы или одновременное включение многими соседями электроприборов или подключение/отключение мощного потребителя. Для защиты дорогостоящей электротехники и всего частного дома необходима защита от перенапряжения в сети.

      Особенности защиты домашней электропроводки

      Организация защиты от возникающего высокого напряжения – один из ключевых вопросов при прокладке электросети в жилом доме. Осуществляется она с помощью особых трансформаторов и фильтров сети. Во многих домах на этажных щитках устанавливаются автоматические выключатели, которые защищают от электротоков при коротком замыкании и временных перегрузок.

      Когда возможна высокая нагрузка, все устройства, защищающие сети от повышенного напряжения, должны иметь приспособления для автоотключения и выключатели, реагирующие на изменения показателей тока. Как правило, самая надежная защита от подобных скачков ставится на входном силовом проводе, поскольку именно он испытывает наибольшее воздействие во время пиков нагрузки.

      Схема защиты от перенапряжения домашней электросети бывает простой и многоуровневой. Простая – представлена в основном реле перенапряжения в этажных щитках, а многоступенчатая (комбинированная, защищающая как от бытовых скачков напряжения, так и от импульсных, при грозах) – УЗИП, т.е. устройства защиты от импульсных перенапряжений. Такие устройства наиболее часто встречаются в частных домах.

      Обратите внимание! Электронные приборы выходят из строя как из-за повышенного, так и из-за пониженного напряжения в сети (например, холодильники тяжело запускаются, что негативно сказывается на их дальнейшей работе).

      Изоляционные слои домашних электросетей рассчитаны, как правило, на стандартные 220в, поэтому, если напряжение возрастает многократно, в диэлектрическом слое проскакивает искра, которая может спровоцировать электродугу и дальнейшее возгорание.

      Чтобы не допустить негативных последствий, применяют следующие защиты, функционирующие по таким принципам:

      • при резком внеплановом повышении напряжения происходит отключение электросхемы в доме или в квартире;
      • вывода полученного сверхнормативного электрического потенциала от электроприборов путем перевода его в земляной контур.

      Если напряжение поднимается незначительно (например, до 380 вольт), на помощь приходят различные стабилизаторы. Однако их защитные возможности довольно ограничены – они больше рассчитаны на поддержание заданных рабочих значений в электросетях.

      При проектировании защиты для частного дома рассматривают различные конструкционные решения и их технические характеристики. Необходимо учитывать принципы формирования базы ограничителей перенапряжения (опн). Например, газонаполненные разрядники после того, как импульс прошел, пропускают через себя т.н. сопровождающий ток, напряжение которого сопоставимо с коротким замыканием. По этой причине они сами могут быть источником возгорания, и их нельзя применять для защиты от электрического пробоя.

      Для домашних сетей чаще всего применяют варисторное устройство защиты (полупроводниковые резисторы) – реостаты, скомпанованные из варисторных «таблеток» из смеси оксидов цинка, висмута, кобальта и других. При штатном функционировании электросети такой автомат защиты допускает микроскопические утечки, а при проходе импульса повышенной вольтажности – способен мгновенно перестроиться на режим «туннеля» и «спустить» больше тысячи ампер за очень короткий промежуток времени, поскольку сопротивление на этом приспособлении снижается с возрастанием силы тока, после чего происходит быстрое возвращение к штатной «боевой готовности».

      Классы стойкости электропроводки

      Все электроприборы в бытовых зданиях разделяется по четырем основным категориям, в зависимости от максимально выдерживаемого перенапряжения:

      • IV категория – до 6 киловольт;
      • III категория – до 4 киловольт;
      • II категория – до 2,5 киловольт;
      • I категория – до 1,5 киловольт.

      В соответствии с этими категориями выстраивается система защиты, которая сокращенно называется узо (устройство защитного отключения) с защитой от перенапряжения, в целях маркетинга их чаще всего называют ограничителями, используют и другие наименования. Ограничители монтируются по ходу движения возможного импульса. Так, на участке от вводного щитка идет 6-киловольтный импульс, в первой зоне он снижается ограничителем перенапряжения до 4 киловольт, в следующей зоне он падает до 2,5 киловольт, а в жилой зоне с помощью УЗИП III категории потенциал импульса снижают до 1,5 киловольт. Устройства защиты всех классов функционируют в комплексе, последовательно понижая потенциал до нормальных значений, с которыми легко справляется изоляция домашней электропроводки.

      Важно! При неисправности хотя бы одного из звеньев этой защитной цепочки может возникнуть электропробой в изоляции, что приведет к выходу конечного электроприбора из строя. Поэтому необходимо периодически проверять исправность каждого элемента устройств защитного отключения.

      Основные устройства системы защиты

      Один из лучших способов спасти электросеть от скачков напряжения – монтаж стабилизатора, подходящего по техническим характеристикам. Это недешевые устройства, и не всегда они используются, поскольку напряжение в сетях и так бывает достаточно стабильным.

      Также устранить нестабильность в работе сети помогают реле контроля напряжения. При обрыве нулевой жилы и замыкании в провисших кабелях такое реле способно включить защитные функции даже быстрее стабилизатора, нужно лишь 2-3 миллисекунды.

      Такие реле очень компактны – для монтажа они требуют меньше места, чем стабилизаторы, легко ставятся на простейшую din-рейку, кабеля подключаются элементарно (в отличие от монтажа стабилизаторов, когда вынужденно вклиниваются в электросеть или устанавливают особый короб для него). Стабилизаторы заметно гудят, поэтому в жилых помещениях их устанавливать нежелательно, а вот реле работают практически бесшумно. Кроме того, аппараты, контролирующие разность электрических потенциалов, потребляют очень мало электричества. Цена на такие реле в несколько раз ниже тех, что сложились на стабилизаторы.

      Принцип работы реле контроля состоит в том, что при постоянном поступлении электротока устройство определяет разность потенциалов и сравнивает ее с допустимыми значениями. Если показатели в норме, ключи остаются открытыми, и ток продолжает течь по сети. Если же проходит мощный импульс, происходит моментальное закрытие ключей и отключение подачи электроэнергии потребителям. Такая быстрая и однозначная реакция помогает обезопасить все подключенные бытовые агрегаты.

      Дополнительная информация. Возвращение в штатный режим происходит с некоторой задержкой, регулируемой таймером. Это необходимо для того, чтобы крупные электроприборы, такие как холодильники, кондиционеры и другие, включились с соблюдением правил и технической настройкой.

      Подключение реле производится по фазному кабелю, при этом нуль-кабель включается во внутреннюю схему для питания энергией.

      Имеется два способа: сквозное подключение (по прямой) или с использованием прибора – контрактора для коммуникации. Оптимально подключать релейный механизм до подключения счетчика, чем обеспечится и его защита от перенапряжения. Однако, при наличии на приборе учета пломбы придется монтировать реле за ним.

      Импульсные перенапряжения в электросети частных домов возникают из-за грозы с молниями или коммутационных скачков. Для безопасности электропроводки применяются специальные устройства УЗИП. Как правило, это ограничители перенапряжений нелинейные (ОПН), стабилизаторы и реле контроля потенциалов. Конечно, обустройство такой системы – мероприятие затратное, однако его стоимость гораздо ниже дорогих электробытовых приборов.

      Видео

      Понравилась статья? Поделить с друзьями:
      Добавить комментарий

      ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

      Adblock detector