Устройство принцип действия область применения трансформаторов

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем знакомство с электронными компонентами и в этой статье рассмотрим устройство и принцип работы трансформатора.

Трансформаторы нашли широкое применение в радио и электротехнике и применяются для передачи и распределения электрической энергии в сетях энергосистем, для питания схем радиоаппаратуры, в преобразовательных устройствах, качестве сварочных трансформаторов и т.п.

Трансформатор предназначен для преобразования переменного напряжения одной величины в переменное напряжение другой величины.

В большинстве случаев трансформатор состоит из замкнутого магнитопровода (сердечника) с расположенными на нем двумя катушками (обмотками) электрически не связанных между собой. Магнитопровод изготавливают из ферромагнитного материала, а обмотки мотают медным изолированным проводом и размещают на магнитопроводе.

Одна обмотка подключается к источнику переменного тока и называется первичной (I), с другой обмотки снимается напряжение для питания нагрузки и обмотка называется вторичной (II). Схематичное устройство простого трансформатора с двумя обмотками показано на рисунке ниже.

1. Принцип работы трансформатора.

Принцип работы трансформатора основан на явлении электромагнитной индукции.

Если на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток Io, который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток Фo, который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2. И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2, которое будет приблизительно равно наведенной ЭДС е2.

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1, образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2, создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2, стремящийся размагнитить порождающий его магнитный поток.

В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1, т.е.

Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2, под воздействием которой во вторичной цепи течет ток I2. Именно благодаря наличию магнитного потока Фo и существует ток I2, который будет тем больше, чем больше Фo. Но и в то же время чем больше ток I2, тем больше противодействующий поток Ф2 и, следовательно, меньше Фo.

Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2, тока I2 и потока Ф2, обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.

Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo, а без него не мог бы существовать поток Ф2 и ток I2. Следовательно, магнитный поток Ф1, создаваемый первичным током I1, всегда больше магнитного потока Ф2, создаваемого вторичным током I2.

Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.

Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным.

Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим.

Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим.

Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2. Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.

Трансформатор может работать только в цепях переменного тока. Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.

2. Устройство трансформатора.

2.1. Магнитопровод. Магнитные материалы.

Назначение магнитопровода заключается в создании для магнитного потока замкнутого пути, обладающего минимальным магнитным сопротивлением. Поэтому магнитопроводы для трансформаторов изготавливают из материалов, обладающих высокой магнитной проницаемостью в сильных переменных магнитных полях. Материалы должны иметь малые потери на вихревые токи, чтобы не перегревать магнитопровод при достаточно больших значениях магнитной индукции, быть достаточно дешевыми и не требовать сложной механической и термической обработки.

Магнитные материалы, используемые для изготовления магнитопроводов, выпускаются в виде отдельных листов, либо в виде длинных лент определенной толщины и ширины и называются электротехническими сталями.
Листовые стали (ГОСТ 802-58) изготавливаются методом горячей и холодной прокатки, ленточные текстурованные стали (ГОСТ 9925-61) только методом холодной прокатки.

Также применяют железноникелевые сплавы с высокой магнитной проницаемостью, например, пермаллой, перминдюр и др. (ГОСТ 10160-62), и низкочастотные магнитомягкие ферриты.

Для изготовления разнообразных относительно недорогих трансформаторов широко применяются электротехнические стали, имеющие небольшую стоимость и позволяющие трансформатору работать как при постоянном подмагничивании магнитопровода, так и без него. Наибольшее применение нашли холоднокатаные стали, имеющие лучшие характеристики по сравнению со сталями горячей прокатки.

Сплавы с высокой магнитной проницаемостью применяют для изготовления импульсных трансформаторов и трансформаторов, предназначенных для работы при повышенных и высоких частотах 50 – 100 кГц.

Читайте также:  Проверка не удалась icloud

Недостатком таких сплавов является их высокая стоимость. Так, например, стоимость пермаллоя в 10 – 20 раз выше стоимости электротехнической стали, а пермендюра – в 150 раз. Однако в ряде случаев их применение позволяет существенно снизить массу, объем и даже общую стоимость трансформатора.

Другим их недостатком является сильное влияние на магнитную проницаемость постоянного подмагничивания, переменных магнитных полей, а также низкая стойкость к механическим воздействиям – удар, давление и т.п.

Из магнитомягких низкочастотных ферритов с высокой начальной проницаемостью изготавливают прессованные магнитопроводы, которые применяют для изготовления импульсных трансформаторов и трансформаторов, работающих на высоких частотах от 50 – 100 кГц. Достоинством ферритов является невысокая стоимость, а недостатком является низкая индукция насыщения (0,4 – 0,5 Т) и сильная температурная и амплитудная нестабильность магнитной проницаемости. Поэтому их применяют лишь при слабых полях.

Выбор магнитных материалов производится исходя из электромагнитных характеристик с учетом условий работы и назначения трансформатора.

2.2. Типы магнитопроводов.

Магнитопроводы трансформаторов разделяются на шихтованные (штампованные) и ленточные (витые), изготавливаемые из листовых материалов и прессованные из ферритов.

Шихтованные магнитопроводы набираются из плоских штампованных пластин соответствующей формы. Причем пластины могут быть изготовлены практически из любых, даже очень хрупких материалов, что является достоинством этих магнитопроводов.

Ленточные магнитопроводы изготавливаются из тонкой ленты, намотанной в виде спирали, витки которой прочно соединены между собой. Достоинством ленточных магнитопроводов является полное использование свойств магнитных материалов, что позволяет уменьшить массу, размеры и стоимость трансформатора.

В зависимости от типа магнитопровода трансформаторы подразделяются на стрежневые, броневые и тороидальные. При этом каждый из этих типов может быть и стрежневым и ленточным.

В магнитопроводах стержневого типа обмотки располагается на двух стержнях (стержнем называют часть магнитопровода, на которой размещают обмотки). Это усложняет конструкцию трансформатора, но уменьшает толщину намотки, что способствует снижению индуктивности рассеяния, расхода проволоки и увеличивает поверхность охлаждения.

Стержневые магнитопроводы используют в выходных трансформаторах с малым уровнем помех, так как они малочувствительны к воздействию внешних магнитных полей низкой частоты. Это объясняется тем, что под влиянием внешнего магнитного поля в обеих катушках индуцируются напряжения, противоположные по фазе, которые при равенстве витков обмоток компенсируют друг друга. Как правило, стержневыми выполняются трансформаторы большой и средней мощности.

В магнитопроводе броневого типа обмотка располагается на центральном стержне. Это упрощает конструкцию трансформатора, позволяет получить более полное использование окна обмоткой, а также создает некоторую механическую защиту обмотки. Поэтому такие магнитопроводы получили наибольшее применение.

Некоторым недостатком броневых магнитопроводов является их повышенная чувствительность к воздействию магнитных полей низкой частоты, что делает их малопригодными к использованию в качестве выходных трансформаторов с малым уровнем помех. Чаще всего броневыми выполняются трансформаторы средней мощности и микротрансформаторы.

Тороидальные или кольцевые трансформаторы позволяют полнее использовать магнитные свойства материала, имеют малые потоки рассеивания и создают очень слабое внешнее магнитное поле, что особенно важно в высокочастотных и импульсных трансформаторах. Но из-за сложности изготовления обмоток не получили широкого применения. Чаще всего их делают из феррита.

Для уменьшения потерь на вихревые токи шихтованные магнитопроводы набираются из штампованных пластин толщиной 0,35 – 0,5 мм, которые с одной стороны покрывают слоем лака толщиной 0,01 мм или оксидной пленкой.

Лента для ленточных магнитопроводов имеет толщину от нескольких сотых до 0,35 мм и также покрывается электроизолирующей и одновременно склеивающейся суспензией или оксидной пленкой. И чем тоньше слой изоляции, тем плотнее происходит заполнение сечения магнитопровода магнитным материалом, тем меньше габаритные размеры трансформатора.

За последнее время наряду с рассмотренными «традиционными» типами магнитопроводов находят применение новые формы, к числу которых следует отнести магнитопроводы «кабельного» типа, «обращенный тор», катушечный и др.

На этом пока закончим. Продолжим во второй части.
Удачи!

1. В. А. Волгов – «Детали и узлы радио-электронной аппаратуры», Энергия, Москва 1977 г.
2. В. Н. Ванин – «Трансформаторы тока», Издательство «Энергия» Москва 1966 Ленинград.
3. И. И. Белопольский – «Расчет трансформаторов и дросселей малой моности», М-Л, Госэнергоиздат, 1963 г.
4. Г. Н. Петров – «Трансформаторы. Том 1. Основы теории», Государственное Энергетическое Издательство, Москва 1934 Ленинград.
5. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

Трансформатор — статическое электромагнитное устрой­ство, имеющее две или больше индуктивно связанных обмоток и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока.

Основные конструктивные элементы трансформатора — магнитная система, обмотки, система изоляции, вводы. Магнитная система. В зависимости от конфигурации ма­гнитной системы трансформаторы подразделяют на стерж­невые (рис. 1. а), броневые (рис. 1. б) и тороидальные (рис. 1. в).

Рис. 1. Основные типы однофазных трансформаторов: стержневой (а); броневой (6); тороидальный (в); 1 — ярмо; 2 — стержень; 3 — обмотки; 4 — тороидальный магнитопровод.

Стержнем называют часть магнитопровода, на которой размещают обмотки. Ярмом называют часть магнитопровода, на которой обмотки отсутствуют. Транс­форматоры большой и средней мощности обычно выпол­няют стержневыми. Они имеют лучшие условия охлаждения и меньшую массу, чем броневые.

Для преобразования (трансформации) электрического напряжения широко используются трансформаторы. Если трансформаторы используются для осуществления питания какой-либо нагрузки, то они называются силовыми. Силовые трансформаторы обычно работают на частоте сети и при необходимости получения большой мощности нагрузки требуют большого объема трансформаторного железа.

Простейший однофазный электрический трансформатор состоит из двух обмоток, размещенных на магнитопроводе, который набран из изолированных друг от друга листов электротехнической стали толщиной 0,3 – 0,5 мм, с целью уменьшения потерь на вихревые токи.

Обмотка, подключаемая к источнику электрической энергии (генератору) или к линии электропередач (электрической сети) называется первичной (входной). Обмотка, к которой подключается приемник электрической энергии — вторичной (выходной).

Конструкция и условное обозначение простейшего трансформатора изображены на рис. 1.

Рисунок 1. Конструкция и условное обозначение простейшего трансформатора.

Действие трансформатора основано на явлении электромагнитной индукции. При подаче от источника электрической энергии напряжения на первичную обмотку электрического трансформатора в ней возникает ток, возбуждающий в магнитопроводе переменный магнитный поток, который, пронизывая витки первичной обмотки, создает в ней напряжение результате явления самоиндукции.

Читайте также:  Интересные рецепты салатов на новый год

Под действием переменного тока первичной обмотки в сердечнике наводится переменное магнитное поле, которое, пронизывая витки обмотки наводит в ней э.д.с. Направление наводимой э.д.с. таково, что создаваемый ею ток в нагрузке создает противодействующее магнитное поле в сердечнике, тем самым увеличивая потребляемый первичной обмоткой ток, т.е. происходит передача энергии. В некоторых случаях, если это при ципиально важно, помечают точкой условное начало обмоток

Если вторичное напряжение в два раза меньше первичного, то ток в нагрузке может быть в два раза больше, чем потребляемый от сети. Трансформатор обеспечивает гальваническую развязку нагрузки от сетевого напряжения, что уменьшает вероятность поражения электрическим током в случае понижающего трансформатора.

С помощью трансформато­ров повышается или понижается напряжение, изменяется число фаз, в некоторых случаях преобразуется частота переменного тока.

Трансформаторы широко используют для следующих целей.

1. В системах передачи и распределения электрической энергии.

2. В преобразовательных устройствах для обеспечения нужной схемы включения вентилей и согласования напряжений на входе и выходе преобразователя.

3. В различных электротехнологических установках для технологических целей: сварки (сварочные трансформаторы), питания электротермических установок (электропечные транс­форматоры) и др.

4. В устройствах связи, автоматики и телемеханики, электробытовых приборов, для питания цепей радио- и те­левизионной аппаратуры, разделения электрических цепей различных элементов этих устройств; согласования напряже­ний и т. п.

5. В электроизмерительных устройствах для включения электроизмерительных приборов в электрические цепи высокого напряжения или в цепи, по которым проходят большие токи, с целью расширения пределов измерения и обеспечения электробезопасности.

Трансформаторы, перечисленные в пп. 1, 2, 3 и частично в п. 4, предназначенные для преобразования электрической энергии в сетях энергосистем и потребителей электрической энергии, называют силовыми. Для режима их работы характерны неизменная частота переменного тока и очень малые отклонения первичного и вторичного напряжений от номинальных значений.

Трансформатором называют статическое электромагнитное устройство, имеющее две или большее число индуктивно связанных обмоток и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока.

С помощью трансформаторов повышается или понижается напряжение, изменяется число фаз, а в некоторых случаях преобразуется частота переменного тока. Возможность передачи электрических сигналов от одной обмотки к другой посредством взаимоиндукции была открытаМ. Фарадеем в 1831 г.; при изменении тока в одной из обмоток, намотанной на стальной магнитопровод, в другой обмотке индуцировалась ЭДС Однако первый практически работающий трансформатор создал известный изобретатель П. Н. Яблочков в содружестве с И. Ф. Усагиным в 1876 г. Это был двухобмоточный трансформатор с разомкнутым магнитопроводом.

В дальнейшем несколько конструкций однофазных трансформаторов с замкнутым магнитопроводом были созданы венгерскими электротехниками О. Блати, М. Дери и К. Циперноеским. Для развития трансформаторостроения и вообще электромашиностроения большое значение имели работы проф. А. Г. Столетова по исследованию магнитных свойств стали и расчету магнитных цепей.

Важная роль в развитии электротехники принадлежит М. О. Доливо-Добровольскому. Он разработал основы теории многофазных и, в частности, трехфазных переменных токов и создал первые трехфазные электрические машины и трансформаторы. Трехфазный трансформатор современной формы с параллельными стержнями, расположенными в одной плоскости, был изобретен им в 1891 г. С тех пор происходило дальнейшее конструктивное усовершенствование трансформаторов, уменьшалась их масса и габариты, повышалась экономичность. Основные положения теории трансформаторов были разработаны в трудах Е. Арнольда и М. Видмара.

В развитии теории трансформаторов и совершенствовании их конструкции большое значение имели работы советских ученых В. В. Корицкого, Л. М. Пиотровского, Г. Н. Петрова, А. В. Сапожникова, А. В. Трамбицкого и др.

Трансформаторы широко используют для следующих целей.

Для передачи и распределения электрической энергии. Обычно на электростанциях генераторы переменного тока вырабатывают электрическую энергию при напряжении 6—24 кВ. Передавать же электроэнергию на дальние расстояния выгодно при больших напряжениях, поэтому на каждой электростанции устанавливают трансформаторы, повышающие напряжение.

В настоящее время для высоковольтных линий электропередачи в СССР применяют силовые трансформаторы с масляным охлаждением напряжением 330, 500 и 750 кВ, мощностью до 1200—1600 MB-А. В связи со строительством дальних линий электропередачи Экибастуз — Центр, Экибастуз — Урал и других напряжением 1150 кВ переменного тока наша электро­промышленность создала трансформаторные группы, состоящие из трех однофазных трансформаторов мощностью 667 MB-А, а для линий 1500 В постоянного тока — двенадцатифазные преобразовательные блоки с четырехобмоточными трансформаторами общей мощностью 1500 MB-А. КПД таких трансформаторов составляет 98 — 99% и выше.

Для перспективных линий электропередачи переменного тока напряжением 1800—2000 кВ и постоянного тока напряжением 3000 кВ разрабатывают трансформаторы мощностью 1320 MB-А на одну фазу.

Электрическая энергия распределяется между промышленными предприятиями и населенными пунктами, в городах и сельских местностях, а также внутри промышленных предприятий по воздушным и кабельным линиям при напряжении 220, 110, 35, 20, 10 и 6 кВ. Следовательно, во всех узлах распределительных сетей должны быть установлены трансформаторы, понижающие напряжение. Кроме того, понижающие трансформаторы следует устанавливать в пунктах потребления электроэнергии, так как большинство электрических потребителей переменного тока работает при напряжениях 220, 380 и 660 В. Таким образом, электрическая энергия при передаче от электрических станций к потребителям подвергается в трансформаторах многократному преобразованию (3 — 5 раз). При­меняемые для этих целей трансформаторы могут быть одно-и трехфазными, двух- и трехобмоточными.

Для обеспечения нужной схемы включения вентилей в преобразовательных устройствах и согласования напряжений на входе и выходе преобразователя. В вентильных преобра зователях, выпрямляющих переменный ток или преобразующих его из постоянного в переменный (инверторы), отношение напряжений на входе и выходе зависит от схемы включения вентилей. Поэтому если на вход преобразователя подается стандартное напряжение, то на выходе получается нестандартное. Для устранения этого недостатка вентильные преобразователи, как правило, снабжают трансформаторами, обеспечивающими стандартное выходное напряжение при принятой схеме включения вентилей. Кроме того, ряд схем включения вентилей требует обязательного применения трансформатора. Трансформаторы, применяемые для этой цели, называют преобразовательными. Их мощность достигает тысяч киловольт-ампер, напряжение 110 кВ; они работают при частоте 50 Гц и более. Рассматриваемые трансформаторы выполняют одно-, трех- и многофазными с регулированием выходного напряжения в широких пределах и без регулирования.

Читайте также:  Чем отличается гидроизоляция от пароизоляции для кровли

В последнее время для возбуждения мощных турбо-и гидрогенераторов, электропривода и других целей все шире начинают применять трансформаторы с естественным воздушным охлаждением напряжением 3 — 24 кВ и мощностью 133-6300 кВ-А. Благодаря использованию в этих трансформаторах новой теплостойкой изоляции удается повысить их нагрузочную способность и в 1,3 — 1,5 разасократить, массогабаритные показатели по сравнению с применявшимися ранее трансформаторами с масляным охлаждением.

Для различных технологических целей: сварки (сварочные трансформаторы), питания электротермических установок (электропечные трансформаторы) и др. Мощность их достигает десятков тысяч киловольт-ампер при напряжении до 10 кВ; они работают обычно при частоте 50 Гц.

Для питания различных цепей радио- и телевизионной аппаратуры; устройств связи, автоматики в телемеханики, электробытовых приборов; для разделения электрических цепей различных элементов этих устройств; для согласования напряжений и т. п. Трансформаторы, используемые в этих устройствах, обычно имеют малую мощность (от нескольких вольт-ампер до нескольких киловольтампер), невысокое напряжение, работают при частоте 50 Гц и более. Их выполняют двух-, трех- и многообмоточными; условия работы, предъявляемые к ним требования и принципы проектирования весьма специфичны.

Для включения электроизмерительных приборов и некоторых аппаратов, например реле, в электрические цепи высокого напряжения или в цепи, по которым проходят большие токи, с целью расширения пределов измерения и обеспечения электробезопасности. Трансформаторы, применяемые для этой цели, называют измерительными. Они имеют сравнительно небольшую мощность, определяемую мощностью, потребляемой электроизмерительными приборами, реле и др.

Трансформаторы, перечисленные в п. 1, 2, 3 и частично в п. 4, предназначенные для преобразования электрической энергии в сетях энергосистем и потребителей электрической энергии, называют силовыми. Для режима их работы характерны неизменная частота переменного тока и очень малые отклонения первичного и вторичного напряжений от номинальных значений.

Силовые трансформаторы, выпускаемые отечественными заводами, разделены на несколько групп (габаритов) от I до VIII. Например, трансформаторы мощностью до 100 кВ•А включительно относят к габариту I, от 160 до 630 кВ • А — к габариту II, от 1000 до 6300 кВ • А — к габариту III и т. п.

В данной главе в основном рассматривается теория силовых трансформаторов; другие же виды трансформаторов рассмотрены кратко на основе общей теории.

ПРИНЦИП ДЕЙСТВИЯ ТРАНСФОРМАТОРА

Электромагнитная схема однофазного двухобмоточного трансформатора состоит из двух обмоток (рис. 2.1), разме­щенных на замкнутом магнитопроводе, который выполнен из ферромагнитного материала. Применение ферромагнитного магнитопровода позволяет усилить электромагнитную связь между обмотками, т. е. уменьшить магнитное сопротивление контура, по которому проходит магнитный поток машины. Первичную обмотку 1 подключают к источнику переменного тока — электрической сети с напряжением u1. Ко вторичной обмотке 2 присоединяют сопротивление нагрузки ZH.

Обмотку более высокого напряжения называют обмоткой высшего напряжения (ВН), а низкого напряжения — обмоткой низшего напряжения (НН). Начала и концы обмотки ВН обозначают буквами А и X; обмотки НН — буквами а и х.

При подключении к сети в первичной обмотке возникает переменный ток i1 , который создает переменный магнитный поток Ф, замыкающийся по магнитопроводу. Поток Ф индуцирует в обеих обмотках переменные ЭДС — е1 и е2, пропорциональные, согласно закону Максвелла, числам витков w1 и w2 соответствующей обмотки и скорости изменения потока dФ/dt.

Рис. 2.1. Электромагнитная система однофазного трансфор­матора : 1,2 — первичная и вторичная обмот­ки; 3 — магнитопровод

Таким образом, мгновенные значения ЭДС, индуцированные в каждой обмотке,

Следовательно, отношение мгновенных и действующих ЭДС в обмотках определяется выражением

Если пренебречь падениями напряжения в обмотках тран­сформатора, которые обычно не превышают 3 — 5% от номи­нальных значений напряжений U1 и U2, и считать E1≈U l и Е2U2, то получим

Следовательно, подбирая соответствующим образом числа витков обмоток, при заданном напряжении U1 можно получить желаемое напряжение U2. Если необходимо повысить вторичное напряжение, то число витков w2 берут больше числа w1; такой трансформатор называют повышающим. Если требуется уменьшить напряжение U2, то число витков w2 берут мень­шим w1; такой трансформатор называют понижающим,

Отношение ЭДС ЕВН обмотки высшего напряжения к ЭДС ЕНН обмотки низшего напряжения (или отношение их чисел витков) называют коэффициентом трансформации

Коэффициент k всегда больше единицы.

В системах передачи и распределения энергии в ряде слу­чаев применяют трехобмоточные трансформаторы, а в устрой­ствах радиоэлектроники и автоматики — многообмоточные трансформаторы. В таких трансформаторах на магнитопроводе размещают три или большее число изолированных друг от друга обмоток, что дает возможность при питании одной из обмоток получать два или большее число различных напряжений (U2, U3, U4 и т.д.) для электроснабжения двух или большего числа групп потребителей. В трехобмоточных силовых трансформаторах различают обмотки высшего, низшего и среднего (СН) напряжений.

В трансформаторе преобразуются только напряжения и токи. Мощность же остается приблизительно постоянной (она несколько уменьшается из-за внутренних потерь энергии в трансформаторе). Следовательно,

При увеличении вторичного напряжения трансформатора в k раз по сравнению с первичным, ток i2 во вторичной обмотке соответственно уменьшается в k раз.

Трансформатор может работать только в цепях переменного тока. Если первичную обмотку трансформатора под­ключить к источнику постоянного тока, то в его магнито-проводе образуется магнитный поток, постоянный во времени по величине и направлению. Поэтому в первичной и вторичной обмотках в установившемся режиме не индуцируются ЭДС, а следовательно, не передается электрическая энергия из первичной цепи во вторичную. Такой режим опасен для трансформатора, так как из-за отсутствия ЭДС E1 первич­ной обмотке ток I1 =U1R1 весьма большой.

Важным свойством трансформатора, используемым в устройствах автоматики и радиоэлектроники, является способность его преобразовывать нагрузочное сопротивление. Если к источнику переменного тока подключить сопротивление R через трансформатор с коэффициентом трансформации к, то для цепи источника

где Р1— мощность, потребляемая трансформатором от источ­ника переменного тока, Вт; Р2 = I2 2 RP1 — мощность, по­требляемая сопротивлением R от трансформатора.

Таким образом, трансформатор изменяет значение сопро­тивления R в k 2 раз. Это свойство широко используют при разработке различных электрических схем для согласования сопротивлений нагрузки с внутренним сопротивлением источ­ников электрической энергии.

42. Идеальный и реальный трансформаторы. Векторная диаграмма и схемы замещения.

Понравилась статья? Поделить с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock detector