Электрические машины преобразуют механическую энергию в электрическую и, наоборот, электрическую энергию в механическую. Машины, преобразующие механическую энергию в электрическую, называются генераторами. Машины, преобразующие электрическую энергию в механическую, называются двигателями.
Как правило электрическую машину можно использовать и как генератор и как двигатель. Свойство изменять направление преобразования энергии называется обратимостью машины.
Электрические машины делятся на машины постоянного и переменного тока. Машины переменного тока могут быть одно- и многофазными. Наиболее широко применяются трехфазные синхронные и асинхронные машины, а также коллекторные машины переменного тока.
Принцип действия электрической машины основан на использовании законов электромагнитной индукции и электромагнитных сил.
Если в магнитное поле (рис. 2.1) поместить проводник и под действием определенной силы F1 перемещать его перпендикулярно магнитным линиям , то в нем возникает электродвижущая сила (ЭДС)
где B – магнитная индукция в месте нахождения проводника, l – активная длина проводника (длина той его части, которая находится в магнитном поле), v – скорость перемещения проводника. Направление ЭДС (на рисунке за плоскость чертежа), можно определить в соответствии с правилом правой руки.
Если расположить ладонь правой руки перпендикулярно магнитным линиям так, чтобы линии входили в ладонь, а большой палец, отставленный в сторону, направить по движению проводника, то вытянутые пальцы ладони будут указывать направление индуктированной ЭДС.
Если проводник перемещается под углом α к направлению магнитных линий поля, то
ЭДС в проводнике будет индуктироваться и в том случае, когда проводник неподвижный, а перемещается магнитное поле полюсов.
Рисунок 2.1 – Схема, поясняющая принцип действия электрической машины.
Если проводник замкнуть на приемник энергии то в замкнутой цепи под действием ЭДС возникнет ток I, направление которого совпадает с направлением ЭДС в проводнике. Вследствие взаимодействия тока в проводнике с магнитным полем возникает электромагнитная сила
направление которой удобно определять по правилу левой руки.
Если расположить ладонь левой руки перпендикулярно магнитным линиям так, чтобы магнитные линии входили в ладонь, а вытянутые пальцы ладони направить по течению тока, то отставленный в сторону большой палец укажет направление силы, действующей на проводник.
Эта сила будет направлена противоположно силе F1, которая перемещает проводник в магнитном поле.
Итак если в такой простейшей электрической машине механическая энергия, затрачиваемая на перемещение проводника, преобразуется в электрическую энергию, которая отдается приемнику энергии, то такая машина работает генератором. Та же простейшая электрическая машина может работать и двигателем. Если от внешнего источника энергии через проводник пропустить ток, то вследствие взаимодействия тока в проводнике с магнитным полем полюсов возникает электромагнитная сила Fe, под действием которой проводник будет перемещаться в магнитном поле, преодолевая силу торможения механического приемника энергии.
В электрических машинах как правило обеспечивается не поступательное, а вращательное движение проводников в магнитном поле. При этом электромагнитные силы, действующие на проводник, используются для получения вращающего момента.
Для увеличения ЭДС и электромагнитных сил электрические машины имеют обмотки с большим количеством витков, которые соединяются между собой так, чтобы ЭДС в них имели одинаковое направление и складывались.
Электрическая машина состоит из двух основных частей – статора и ротора. Статором называется неподвижная часть машины, ротором – ее вращающаяся часть. Обмотку электромагнита, создающего магнитное поле, называют обмоткой возбуждения, а ту часть машины, на которой она расположена — индуктором. Обмотку, в которой индуктируется напряжение, называют якорной обмоткой, а ту часть машины, на которой она расположена — якорем
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10830 — | 7386 —
или читать все.
91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
Отключите adBlock!
и обновите страницу (F5)
очень нужно
Электрические машины преобразуют механическую энергию в электрическую и обратно: электрическую — в механическую. Электромеханическое преобразование энергии — одно из основных преобразований в окружающем нас мире. Это преобразование энергии используется в живой и неживой природе и в созданных человеком электрических машинах.
Понятие «электромеханический преобразователь» — более широкое, чем «электрическая машина». Принято считать, что электрические машины созданы человеком и применяются в различных сферах его деятельности. Это же пре-
ооразование энергии природа использует как в мельчайших живых организмах — бактериях и макрообъектах, таких как планеты и звезды [7, 6].
Рис. 1.13. Классы электромеханических преобразователей
Электрические машины — электромеханические преобразователи (ЭП) — можно разделить на три класса: индуктивные электрические машины, в которых рабочим полем является магнитное поле; емкостные ЭП, в которых преобразование электрической энергии в механическую и обратно осуществляется эл с ктр и ч сс к и м полем, и индуктивно-емкостные ЭП, в которых электромеханическое преобразование осуществляется магнитным и электрическим полями. Принципиальные схемы ЭП показаны на рис. 1.13.
В индуктивных ЭП электромеханическое преобразование энергии происходит за счет изменения индуктивности (потокосцеплений) обмоток, а в емкостных ЭП — за счет изменения емкости. Индуктивно-емкостные ЭП в простейшем случае представляют собой объединение в одну электромеханическую систему движущихся частей и электрических цепей индуктивной и емкостной машин (см. рис. 1.13).
В индуктивных ЭП энергия концентрируется в магнитном поле, а в емкостных — в электрическом. В индуктивно-емкостных машинах преобразование энергии происходит в магнитном и электрическом полях.
На рис. 1.1 4, я на шкале единичной мощности от 0 до бесконечности представлены предпочтительные области распространения ЭП различных классов. На этой шкале мощностей есть две замечательные точки: 10 17 Вт — мощность ворсинки бактерии и 10 9 Вт — мощность турбогенератора — самой мощной электрической машины, созданной человеком. На рис. 1.14, б показаны предпочтительные области распространения различных классов электрических машин в зависимости от частоты сети.
Хотя ЭП с электрическим рабочим полем появились раньше индуктивных, они как силовые ЭГ1 не нашли про-
Рис. 1.14. Области предпочтительного распространения ЭП
мышленного применения. Сделаны пока лишь робкие попытки создания индуктивно-емкостных ЭИ при использовании магнитострикционного и пьезоэлектрического эффектов.
Емкостные и индуктивно-емкостные ЭП будут немного представлены в гл. 8 учебника. Дальше рассматриваем только индуктивные электрические машины, которые получили господствующее положение во всех сферах жизни современного общества.
Все разновидности индуктивных электрических машин по роду питания можно разделить на машины переменного и постоянного тока.
Машины переменного т ока делятся на синхронные и асинхронные (несинхронные), коллекторные машины переменного тока и трансформаторы.
В синхронных машинах угловая скорость ротора со,, и угловая скорость магнитного поля шс равны. В асинхронных машинах угловая скорость ротора не равна угловой скорости поля: сор оос. При этом сор может быть меньше или больше угловой скорости поля. Направления вращения ротора и поля статора могут быть противоположными.
Коллекторные машины переменного тока отличаются от асинхронных и синхронных машин тем, что имеют механический преобразователь частоты и числа фаз — коллектор, который соединен с обмоткой статора или ротора.
Трансформаторы — электромагнитные преобразователи энергии. В них не происходит преобразования электрической энергии в механическую и обратно, а имеет место преобразование электрической энергии одного вида в другой. Трансформаторы выполняются таким образом, что обмотки нс могут перемещаться относительно друг друга.
По режиму работы электрические машины делятся на генераторы и двигатели. В генераторах механическая энергия, подводимая к валу машины, преобразуется в электрическую энергию. В двигателях электрическая энергия преобразуется в механическую энергию. Одна и та же электрическая машина может работать и двигателем, и генератором. Однако у генераторов и двигателей обычно имеются конструктивные отличия и на заводском щите машины указывается режим работы.
Синхронные машины могут работать в режиме потребления или отдачи в сеть реактивной мощности. Такие машины называются синхронными компенсаторами.
Электрические машины, как правило, выполняются с одной вращающейся частью — ротором и неподвижной частью — статором. Когда вращается только ротор, машина имеет одну степень свободы. Такие машины называются одномерными.
Электромагнитный момент в электрических машинах приложен и к ротору, и к статору. Если дать возможность вращаться обеим частям машины, они будут перемещаться в противоположные стороны. У машины, в которой может вращаться и ротор, и статор, — две степени свободы. Это двухмерные машины. В навигационных приборах ротором может быть шар, который вращается двумя статорами, расположенными под углом 90°. Такие машины имеют три степени свободы. В космической электромеханике приходится рассчитывать шестимерные электромеханические системы, в которых статор и ротор имеют три степени свободы.
Электрические машины могут иметь возвратно-поступательное движение. Однако в машинах с возвратно-поступательным движением статор и ротор разомкнуты и магнитное ноле отражается от краев, что приводит к искажению ноля в воздушном зазоре. Краевой эффект в линейных электрических машинах ухудшает энергетические показатели. Низкие энергетические показатели ограничивают применение электрических машин с возвратно-поступательным движением.
Все электрические машины имеют неподвижную часть — статор и вращающуюся — ротор (рис. 1.15, а). Энергия магнитного поля концентрируется в основном в воздушном зазоре — промежутке между статором и ротором.
На рис. 1.15, а —в показано, как из обычной машины с цилиндрическим статором и ротором получаются машины с сегментным статором и линейные электрические машины. Линейная машина получается при увеличении диаметра
Рис. 1.15. Преобразование машины традиционной конструкции в машину с сегментным статором и линейную машину ротора сегментной машины до бесконечности. Линейные двигатели находят применение для получения линейных перемещений. В генераторном режиме линейные машины практически не применяются.
Особое место среди ЭП занимают индикаторные машины автоматических устройств. Это различные датчики, преобразователи цифровой информации в угловые и линейные перемещения, приборы времени и другие электромеханические устройства навигационных систем.
Бесчисленны конструктивные исполнения электрических машин, которые работают под водой, в космосе, под землей и в обычных условиях. Почти все индуктивные электрические машины имеют вращательное движение, причем обычно вращается одна часть машины — ротор, а статор неподвижен. Однако находят применение и машины с возвратно- поступательным, колебательным, импульсным движением ротора. Используются машины с жидким и газообразным роторами.
Электрические машины предназначены для преобразования механической энергии в электрическую (генераторы) и электрической энергии в механическую (двигатели). Принцип действия всех электромашин основан на законе электромагнитной индукции и возникновении электромагнитной силы.
При перемещении прямолинейного проводника, замкнутого через внешнюю цепь на нагрузку, с постоянной скоростью в однородном магнитном поле в проводнике индуктируется неизменяющаяся э.д. с. электромагнитной индукции, а в замкнутой цепи возникает электрический ток (рис. 22, а) . Направление э. д. с. в проводнике определяют по правилу правой руки (рис. 22,в), а ее величину — по формуле
где В — магнитная индукция, характеризующая интенсивность магнитного поля; l — активная длина проводника, пронизываемая силовыми линиями магнитного поля, м; v — скорость перемещения проводника в магнитном поле, м/с: а — угол между направлением скорости движения проводника и направлением вектора магнитной индукции.
Если проводник движется перпендикулярно силовым линиям магнитного поля, то а=90°, a э. д. с. будет максимальной:
Направление тока в проводнике совпадает с направлением э. д. с.
На проводник с током действует электромагнитная сила (Н).Эта сила препятствует перемещению проводника в магнитном поле. Направление электромагнитной силы определяют по правилу левой руки (рис. 22,г). Для ее преодоления необходима внешняя сила. Чтобы проводник перемещался с постоянной скоростью, необходимо приложить внешнюю силу, равную по величине и противоположно направленную электромагнитной силе.
Из сказанного следует, что механическая мощность, затрачиваемая на движение проводника в магнитном поле, преобразуется в электрическую мощность в цепи проводника.
В судовых генераторах внешняя сила создается первичными двигателями (дизелем, турбиной).
Преобразование электрической энергии в механическую. При пропускании электрического тока одного направления через прямолинейный проводник, расположенный в однородном магнитном поле, возникает электромагнитная сила, под действием которой проводник перемещается в магнитном поле с линейной скоростью V (рис. 22,б) Направление движения проводника совпадает с направлением действия электромагнитной силы и определяется по правилу левой руки. Во время движения проводника в нем индуктируется э д. с, направленная встречно напряжению U источника электроэнергии. Часть этого напряжения затрачивается на внутреннем сопротивлении проводника R.
Таким образом, электрическая мощность в проводнике, преобразуется в
механическую и частично расходуется на тепловые потери проводника Именно на этом принципе основана работа электродвигателей.
2. Принципы получения переменного и постоянного тока.
В реальных электрических машинах проводники конструктивно изготовляют в виде рамок. Для уменьшения магнитного сопротивления машины, а следовательно, для увеличения значений э. д. с. и к. п. д. в генераторах, вращающего момента и к. п. д в электродвигателях активные стороны рамки укладывают в пазы цилиндрического стального сердечника (якоря), который совместно с закрепленной на нем рамкой может свободно вращаться в магнитном поле. Для этой же цели полюсам магнита придают особую форму, при которой силовые линии поля всегда направлены перпендикулярно направлению движения активных сторон рамки, а магнитная индукция в воздушном зазоре между полюсами и якорем распределена равномерно (рис. 23,а).
Если при помощи сторонней силы якорь вместе с рамкой вращать в магнитном поле полюсов, то в соответствии с законом электромагнитной индукции в активных сторонах аЬ и cd рамки индуктируются э. д. с, направленные в одну сторону и суммируемые.
При переходе активных сторон через плоскость, перпендикулярную магнитному полю, индуктируемые в них э. д. с. меняют свое направление. В рамке будет действовать э д. с, переменная как по величине, так и по направлению. Если концы рамки через контактные кольца соединить с внешней целью, то в цепи будет протекать переменный ток.
Рис 23 Принцип получения переменного тока
1 — щетки. 2 — контактные кольца, 3 — стальной сердечник; 4 —рамка
Для выпрямления тока электрическая машина снабжена специальным устройством — коллектором. Простейший коллектор представляет собой два изолированных полукольца, к которым присоединяют концы вращающейся в магнитном поле рамки (рис. 24,а).
С внешней цепью коллекторные пластины соединены при помощи неподвижных щеток, рабочие поверхности которых свободно скользят по вращающемуся коллектору 2. Щетки на коллекторе устанавливают так, чтобы они переходили с одного полукольца на другое в тот момент, когда индуктируемая в рамке э. д. с. равна нулю. При повороте на 90°, когда рамка займет горизонтальное положение, в ее проводниках э. д. с. не индуктируется, так как они не пересекают магнитного поля. Ток в контуре также равен нулю.
Рис 24. Принцип получения постоянного тока
При перемещении еще на 90* рамка снова займет вертикальное положение, ее проводники поменяются местами и направление э. д. с и тока в них изменится. Так как щетки неподвижны, то к щетке 3 (+) по-прежнему подходит ток от рамки и далее через приемник направляется к щетке 1(-). Таким образом, во внешней цепи направление тока не изменяется.
График выпрямленных э д с и тока изображен на рис. 24,6. Выпрямленный ток имеет пульсирующий характер. Пульсацию тока можно уменьшить увеличением числа рамок, вращающихся в магнитном поле машины, и соответственно числа коллекторных пластин.