/

Шарнирное соединение в строительстве

Здравствуйте, друзья, читатели, коллеги! «Лукаринвест» продолжает свою работу для Вас!

На этот раз поговорим о соединении балок. Жестком и шарнирном.

В целом, балки опираются либо на колонны, либо на стены. Зачастую – под прямым углом, хотя существуют варианты косой опоры.

По конструктивному решению соединение бывает шарнирным и жестким. Реализуется посредством сопрягательных узлов. Само же сопряжение делится на опору сверху и боковое примыкание.

Если мы говорим о шарнирном соединении, то оно выполняет только опорную реакцию, а при жёстком соединении происходит еще и опорный момент.

Наиболее распространено именно соединение шарнирного типа. Жесткое – имеет место быть при проектировании многоэтажных строений, их каркасов в частности.

Не зависимо от вида соединения всегда необходимо четко просчитывать такие моменты, как:

1 Вычисление параметров сварных швов, заклепок, а так же болтов при проектировании сопрягательных узлов.

2 Обеспечить максимальную подгонку к опорной поверхности. Наряду с торцами ребер жесткости ( применяются для равномерного распределение нагрузки на опоры) и прочих элементов которые могут сработать на смятие конструкции.

3 Также, не менее целесообразно принимать во внимание опорное защемление в узлах шарнирного типа, а при жестком типе следует учитывать «столик» и «рыбку» (опорные моменты нижнего и верхнего пояса соответственно).

Ниже представлены иллюстрации типов опоры

1 Балки опираются на колонны.

2 Боковое примыкание балок к колоннам.

3 Боковое примыкание при помощи «столика»

4 Пример жесткого сопряжения

В свою очередь, специалисты нашей компании разработают любой необходимый Вам строительный проект в оптимальные сроки и с полным соблюдением всех необходимых норм.

Для многих начинающих проектировщиков основной проблемой является выбор расчетной схемы: где должны быть шарниры, а где – жесткие узлы? Как понять, что выгодней, и как разобраться, что вообще нужно в конкретном узле конструкции? Это очень обширный вопрос, надеюсь, данная статья немного внесет ясности в столь многогранный вопрос.

Что такое узлы опирания и обозначение этих узлов на схемах

Начнем с самой сути. Каждая конструкция должна иметь опору – как минимум она не должна упасть с высоты, на которой ей положено находиться. Но если копнуть глубже, для надежной работы элемента, нам мало запретить ему падать.

Как может сместиться любой элемент в пространстве? Во-первых, это может быть перемещение по одной из трех плоскостей – по вертикали (ось Z), по горизонтали (оси Х и У). Во-вторых, это может быть поворот элемента в узле вокруг тех же трех осей.

Таким образом, мы имеем целых шесть возможных перемещений (а если учесть еще и направление плюс-минус, то их не шесть, а двенадцать), которые еще называют степенями свободы – и это очень наглядное название. Если конструкция висит в воздухе (нереальная ситуация), то она полностью свободна, ничем не ограничена. Если в каком-то месте под ней появляется опора, не дающая перемещаться по вертикали, значит одна из степеней свободы у элемента в месте опоры ограничена по оси Z. Примером такого ограничения является свободное опирание металлической балки на гладкой, допускающей скольжение поверхности – она не упадет за счет опоры, но может при определенном усилии сдвинуться по оси Х и У, либо повернуться вокруг любой оси. Забегая вперед, уточним важный момент: если у элемента в узле не ограничен поворот, этот узел является шарнирным. Так вот, такой простейший шарнир с ограничением только по одной оси обозначается обычно следующим образом:

Расшифровать такое обозначение просто: кружочки означают наличие шарнира (т.е. отсутствие запрета поворота элемента в этой точке), палочка – запрет перемещения в одном направлении (обычно из схемы сразу становится понятно – в каком именно – в данном случае запрет по вертикали). Горизонталь со штриховкой условно обозначает наличие опоры.

Следующий вариант ограничения степеней свободы – это запрет перемещения в направлении двух осей. Для той же металлической балки это могут быть оси Z и Х, а по У она может переместиться при приложении к ней усилия; повороты ее, как видно, тоже ничем не ограничены.

Как вообще представить отсутствие ограничения поворотов? Если эту балку попытаться закрутить вокруг собственной оси (допустим, опереть на нее перекрытие только с одной стороны – тогда под весом перекрытия балка начнет крутиться), то ничто не помешает этому кручению, балка по всей длине начнет опрокидываться под действием крутящей силы. Точно также если в центре балки приложить вертикальную нагрузку, балка изогнется и в местах опирания свободно повернется вокруг оси У (слева – по часовой стрелке, справа – против). Вот это мы и понимаем как шарнир.

Читайте также:  Капает кран из под вентиля

Допустим, есть жесткий узел опирания балки в раме, который обеспечен путем приварки балки к колонне. Но сварной узел рассчитан неверно и шов не выдерживает приложенного усилия и разрушается. Балка продолжает опираться на колонну, но уже может повернуться на опоре. При этом кардинально меняется эпюра изгибающих моментов: на опорах моменты стремятся к нулю, зато пролетный момент возрастает. А балка была рассчитана на защемление и не готова к восприятию возросшего момента. Так и происходит разрушение. Поэтому жесткие узлы всегда должны быть рассчитаны на максимально возможную нагрузку.

Такой шарнир обозначается следующим образом.

Слева и справа обозначения равноценны. Справа оно более наглядное: 1 – горизонтальный стержень ограничен в узле в перемещении по вертикали (вертикальная палочка с кружочками на концах) и по горизонтали (горизонтальная палочка с кружочками на концах); 2 – вертикальный стержень также ограничен в узле в перемещении по вертикали и по горизонтали. Слева также очень распространенное обозначение точно такого же шарнира, только палочки расположены в виде треугольника, но то, что их две, означает, что ограничение перемещений идет по двум осям – вдоль оси элемента и перпендикулярно его оси. Особо ленивые товарищи могут вообще не рисовать кружочки, и обозначать такой шарнир просто треугольником – такое тоже встречается.

Теперь рассмотрим, что же означает классическое обозначение шарнирно опирающейся балки.

Это балка, имеющая две опоры, а в левой еще и ограниченная в перемещении по горизонтали (если бы этого не было, система не была бы устойчивой – есть такое условие в сопромате – у стержня должно быть три ограничения перемещений, в нашем случае два ограничения по Z и одно по Х). Конструктор должен продумать, как обеспечить соответствие опирания балки расчетной схеме – об этом никогда нельзя забывать.

И последний случай для плоской задачи – это ограничение трех степеней свободы – двух перемещений и поворота. Выше было сказано, что для любого элемента степеней свободы шесть (или двенадцать), но это для трехмерной модели. Мы же обычно в расчете рассматриваем плоскую задачу. И вот мы пришли к ограничению поворота – это классическое понятие жесткого узла или защемления – когда в точке опирания элемент не может ни сдвинуться, ни повернуться. Примером такого узла может служить узел заделки сборной железобетонной колонны в стакан – она настолько глубоко замоноличена, что возможности как сместиться, таки и повернуться у нее нет.

Глубина заделки у такой колонны строго расчетная, но даже по виду мы не можем представить, что колонна на рисунке слева сможет повернуться в стакане. А вот правая колонна – запросто, это явный шарнир, и так конструировать защемление недопустимо. Хотя и там, и там колонна погружена в стакан и паз заполнен бетоном.

Больше вариантов защемления будет по ходу статьи. Сейчас разберемся с обозначением защемления. Оно классическое, и особого разнообразие в отличии от шарниров здесь не наблюдается.

Слева показан горизонтальный элемент, защемленный на опоре, справа – вертикальный.

И напоследок – о шарнирных и жестких узлах в рамах. Если узел соединения балки с колонной жесткий, то он показывается либо без условных обозначений вообще, либо с закрашенным треугольничком в углу (как на верхних двух рисунках). Если же балка опирается на колонны шарнирно, на концах балки рисуются кружочки (как на нижнем рисунке).

Как законструировать шарнирный или жесткий узел

Опирание плит, балок, перемычек.

Первое, что следует запомнить при конструировании узлов – зачастую шарнир от защемления отличает глубина опирания.

Если плита, перемычка или балка опирается на глубину, равную или меньшую высоте сечения, и при этом не выполнено никаких дополнительных мероприятий (приварка к закладным элементам, препятствующая повороту и т.п.), то это всегда чистый шарнир. Для металлических балок считается шарнирным опирание на 250 мм.

Если опирание больше двух – двух с половиной высот сечения элемента, то такое опирание можно считать защемлением. Но здесь есть нюансы.

Во-первых, элемент должен быть пригружен сверху (кладкой, например), причем веса этого пригруза должно быть достаточно, чтобы воспринять усилие в элементе на опоре.

Читайте также:  Fttb ростелеком что это такое

Во-вторых, возможно другое решение, когда поворот элемента ограничивается путем приварки к закладным деталям. И здесь нужно четко разбираться в особенностях конструирования жестких узлов. Если балка или приварена внизу (такое часто встречается и в металлоконструкциях, и в сборном железобетоне – к закладным в опоре привариваются закладные в балке или плите), то это никак не мешает ей повернуться на опоре – это лишь препятствует горизонтальному перемещению элемента, об этом мы говорили выше. А вот если верхняя часть балки надежно заанкерена сваркой на опоре (это либо рамные узлы в металле, либо ванная сварка верхних выпусков арматуры в сборных ригелях – в жестких узлах каркаса, либо сварка закладных элементов в узлах опирания балконных плит, которые обязательно должны быть защемлены, т.к. они консольны), то это уже жесткий узел, т.к. явно препятствует повороту на опоре.

На рисунке ниже выбраны шарнирные и жесткие узлы из типовых серий (серия 2.440-1, 2.140-1 вып. 1, 2.130-1 вып. 9). По ним наглядно видно, что в шарнирном узле крепление идет внизу балки или плиты, а в жестком – вверху. Уточнение: в узле опирания плиты анкер не дает жеского узла, это гибкий элемент, который лишь препятствует горизонтальному смещению перекрытия.

Но законструировать узел правильно – это полдела. Нужно еще сделать расчет всех элементов узла, выдержат ли они максимальное усилие, передаваемое от элемента. Здесь нужно рассчитать и закладные детали, и сварные швы, и проверить кладку в случае, если пригруз от нее учитывается при конструировании.

Соединение колонн с фундаментами.

При опирании металлических колонн определяющим фактором является количество болтов и то, как законструирована база колонны. О металле здесь я распространяться не буду, т.к. это не мой профиль. Напишу только, что если в фундаменте для крепления колонны лишь два болта, то это стопроцентный шарнир. Также если стойка приваривается к закладной детали фундамента через пластину, это тоже шарнир. Остальные случаи подробно приведены в литературе, есть узлы в типовых сериях – в общем, информации много, здесь запутаться сложно.

Для сборных железобетонных колонн используется их жесткая заделка в стакан фундамента (об этом речь шла выше). Если вы откроете «Пособие по проектированию фундаментов на естественном основании под колонны зданий и сооружений», там вы сможете найти расчет всех элементов этого жесткого узла и принципы его конструирования.

При шарнирном узле колонна (столб) просто опирается на фундамент безо всяких дополнительных мероприятий или заделана в неглубокий стакан.

Соединение монолитных конструкций.

В монолитных конструкциях жесткий узел или шарнир всегда определяется наличием правильно заанкеренной арматуры.

Если на опоре арматура плиты или балки не заведена в конструкцию опоры на величину анкеровки или даже нахлестки, то такой узел считается шарнирным.

Так на рисунке ниже показаны варианты опирания монолитных плит из Руководства по конструированию ЖБК. Рисунок (а) и (б) – это жесткое соединение плиты с опорой: в первом случае верхняя арматура плиты заводится в балку на длину анкеровки; во втором – плита защемляется в стене также на величину анкеровки рабочей арматуры. Рисунок (в) и (г) – это шарнирное опирание плиты на балку и на стену, здесь арматура заведена на опору на минимально допустимую глубину опирания.

Рамные узлы соединения монолитных ригелей и колонн в железобетоне выглядят еще серьезней, чем опирание плит на балки. Здесь верхняя арматура ригеля заводится в колонну на величину одной и двух длин анкеровки (половина стержней заводится на одну длину, половина – на две).

Если в узле железобетонного каркаса арматура и балки, и колонны проходит насквозь и дальше идет больше чем на длину анкеровки (например, какой-то средний узел), то такой узел считается жестким.

Чтобы соединение колонн с фундаментом было жестким, из фундаментов должны быть сделаны выпуски достаточной длины (не менее величины нахлестки, подробнее – в Руководстве по конструированию), и эти же выпуски должны быть заведены в фундамент на длину анкеровки.

Аналогично в свайном ростверке – если длина выпусков из сваи меньше, чем длина анкеровки, соединение ростверка со сваей жестким считаться не может. Для шарнирного соединения длину выпусков оставляют 150-200 мм, больше не желательно, т.к. это будет пограничное состояние между шарниром и жестким узлом – а ведь расчет делался как для чистого шарнира.

Если нет места для того, чтобы разместить арматуру на длину анкеровки, проводят дополнительные мероприятия – приварку шайб, пластин и т.п. Но такой элемент должен быть обязательно рассчитан на выкалывание (что-то вроде расчета анкеров закладных деталей, его можно найти в Пособии по проектированию ЖБК).

Читайте также:  Подставка для ванночки своими руками

Также на тему шарниров и защемления можно прочитать здесь.

Рубрика: Технические науки

Дата публикации: 21.01.2014 2014-01-21

Статья просмотрена: 989 раз

Библиографическое описание:

Арискин М. В., Кислякова Е. С. Сопряжение пластинчатых элементов по шарнирной схеме // Молодой ученый. — 2014. — №2. — С. 101-104. — URL https://moluch.ru/archive/61/9026/ (дата обращения: 06.01.2020).

Использование вычислительных программных комплексов играют первостепенную роль в развитии методик расчёта [1], а так же экономической эффективности проектирования [2]. Однако при их использовании могут возникнуть ряд проблем, одной из такой проблемы можно считать метод сопряжения пластичных элементов по шарнирной схеме, группа учёных Пензенского государственного университета архитектуры и строительства занимается решением данной проблемой. Существует множество способов, как решать данную проблему, изложим некоторые из них.

Как создать шарнирное опирание монолитной ж/б плиты на стену (Фундаментные блоки или кирпичную)? Создана модель когда плита опирается по контуру на балки (предполагаемые стены заменили балками), нагрузка приложена — 1т и собственный вес, после расчёта по эпюре моментов видно что это жёсткая заделка, а как сделать шарнирное опирание?" — «можно сделать, на мой взгляд, проще.

1-й вариант — задать кирпичную стену с ее характеристиками (жесткость-см. СНиП «Каменные и армокаменные конструкции») в виде КЭ как балки-стенки (т.е 20–30).

2-й вариант — сдвинуть перекрытие на 5см по отношению к примыкающим узлам стены и ввести 55КЭ с нулевыми жесткостями по UX UY UZ (в этом случае при необходимости можно учесть жесткость раствора шва кладки). Шаг узлов я обычно принимаю 0.5–0.6м и вертикальную жесткость 1E6.

Необходимо быть внимательным при выборе КЭ для балок-стенок. Их ориентация в общей системе координат. При необходимости можно через узлы провести вертикальные стержни фиктивной жесткости. При динамических расчетах надо заменить балки-стенки на оболочки.

Для моделирования сопряжение кирпичной стены А, с монолитной плитой. По логике вещей жесткие узлы оставлять нельзя, так как в случае появления несущей кирпичной стены (в виде балки-стенки), если на нижележащем этаже такой стенки нет, то возникает ситуация:

Стена может передавать усилия на плиту, а «удержать» плиту от прогиба нет. Получается некая односторонняя связь, кнопки для которой нет.

В итоге для практических расчетов как с этим поступать? Шарнирное опирание задавать не надо, так как, если посмотреть и сравнить результаты с шарнирами в узлах и без них, то получатся две совершенно одинаковые картины с мизерными моментами в кирпичной стене, то есть они будут практически отсутствовать.

Это происходит, так как модуль упругости бетона во много раз больше модуля кирпича, отсюда и получается шарнир, так как плита во много раз жестче кирпичной стены.

Для решения данной проблемы команда авторов создала несколько расчетных схем на которых и будут представлены варианты возможного моделирования сопряжения пластинчатых элементов по шарнирной схеме.

Общий вид расчетной схемы, где q- единичная распределенная нагрузка, представлен на рисунке 1.

Рис.1. Общий вид расчётной схемы

Рис.2. В расчетной схеме используется жесткая заделка

Рис. 3. Объединение и перемешивание смежных узлов

Рис. 4. Моделирование шарнирного соединения с помощью введения дополнительных стержневых элементов с жесткостью эквивалентной жесткости стены, где1 — Плита перекрытия; 2 — Введенные стержневые элементы; 3 — Стены

с

Рис. 5. Моделирование шарнирных сопряжений осуществляется путем задания жесткости крайним элементам плиты перекрытия втри раза большей, чем у самой плиты, где 1- EI1 =2750000 (т/м 2 ); 2- EI2=2750000 (т/м 2 ); 3-EI3=2750 (т/м 2 ); EI1=EI2=3EI3

Рис. 6. Где 1- EI1 =2750000(т/м 2 ); 2- EI2 =2750000(т/м 2 ); 3-EI3= 2750000000 (т/м 2 ); EI1=EI2=EI3

Был произведен расчет, по которому получены характерные эпюры напряжений и деформаций данных расчетных схем. Их анализ будет проводиться в следующих статьях.

1. Арискин М. В., Гуляев Д. В., Гарькин И. Н., Агеева И. Ю. Современные тенденции развития проектирования в строительстве [Текст] // Молодой учёный (№ 10(45) Октябрь 2012 г.) С.31–33.

2. Арискин М. В., Гуляев Д. В., Гарькин И. Н, Агеева И. Ю.. Экономическая эффективность проектирования в комплексе Аllplan по сравнению с существующими CAD-системами [Текст] // Молодой ученый. — 2013. — № 5. — С. 32–35.

Оцените статью
Добавить комментарий