/

Номинальный крутящий момент на выходном валу

Сделать кинематический и силовой расчет двух приводов, структурные схемы которых изображены на рис.

– необходимая частота вращения вала на выходе для схемы №1 – мощность двигателя ;

– номинальный крутящий момент на валу двигателя ;

– частота вращения вала двигателя ;

1. Определение передаточного числа мотор-редуктора.

.

По заданию на входе мотор-редуктора частота вращения вала двигателя fpm_start( "true" );

.

2. Разбивка передаточного числа по ступеням

Передаточное число редуктора есть произведение передаточных чисел каждой ступени редуктора.

.

Так как в редукторе две ступени, имеем формулу

,

где .

.

Такое передаточное число входит в диапазон передаточных чисел червячной передачи – от 8 до 80.

3. Определение мощности привода на выходном валу

Мощность на выходном валу в ваттах определяется по зависимости:

,

где Угловая скорость вращения выходного вала в определяется по формуле:

,

где – число оборотов на выходе редуктора, об/мин

.

Общий КПД редуктора находится как произведение КПД отдельных звеньев кинематической цепи. Так как потери на трение в редукторе происходят в подшипниках, зубчатом и червячном зацеплении, имеем формулу

,

где .

– крутящий момент на выходе редуктора

.

.

Таким образом, подставляя полученные значения, получаем ориентировочное значение мощности на выходе привода:

.

4. Определение оборотов и угловых скоростей на валах редуктора

Обороты на входном валу

.

Обороты на втором валу

.

Обороты на выходном валу

.

Угловая скорость на входном валу

.

Угловая скорость на втором валу

.

Угловая скорость на выходном валу

.

5. Определение крутящих моментов на валах без учета потерь

Крутящий момент на входном валу

.

Крутящий момент на втором валу

.

Крутящий момент на выходном валу

.

6. Результаты кинематического и силового расчета.

7. Определение чисел зубьев колес, шестерен и заходов червяка.

Примем число зубьев шестерни прямозубой цилиндрической передачи с учетом отсутствия подрезания не менее 17 – .

Тогда число зубьев колеса

.

Число заходов червяка согласно принятому ранее .

Тогда число зубьев червячного колеса

.

1. Определение передаточное числа мотор-редуктора.

.

По заданию на входе мотор-редуктора частота вращения вала двигателя .

2. Разбивка передаточного числа по ступеням

Передаточное число редуктора есть произведение передаточных чисел каждой ступени редуктора.

.

Так как в редукторе две ступени, имеем формулу

,

где .

.

Такое передаточное число входит в диапазон передаточных чисел прямозубой конической передачи – от 1 до 6.

3. Определение мощности привода на выходном валу

Мощность на выходном валу в ваттах определяется по зависимости:

,

где Угловая скорость вращения выходного вала в определяется по формуле:

,

где – число оборотов на выходе редуктора, об/мин

.

Общий КПД редуктора находится как произведение КПД отдельных звеньев кинематической цепи. Так как потери на трение в редукторе происходят в подшипниках и зубчатом, имеем формулу

,

где .

– крутящий момент на выходе редуктора

.

.

Таким образом, подставляя полученные значения, получаем ориентировочное значение мощности на выходе привода:

.

4. Определение оборотов и угловых скоростей на валах редуктора

Обороты на входном валу

.

Обороты на втором валу

.

Обороты на выходном валу

.

Угловая скорость на входном валу

.

Угловая скорость на втором валу

.

Угловая скорость на выходном валу

.

5. Определение крутящих моментов на валах без учета потерь

Крутящий момент на входном валу

.

Крутящий момент на втором валу

.

Крутящий момент на выходном валу

.

6. Результаты кинематического и силового расчета

7. Определение чисел зубьев колес и шестерен.

Примем число зубьев шестерни прямозубой конической передачи с учетом отсутствия подрезания не менее 19 –.

Тогда число зубьев колеса

.

Примем число зубьев шестерни прямозубой передачи с учетом отсутствия подрезания не менее 17 – .

Тогда число зубьев цилиндрического колеса

.

Крутящий момент на выходе редуктора

1 Крутящий момент на выходном валу редуктора M2 [Нм]
Крутящим моментом на выходном валу редуктора называется вращающий момент, подводимый к выходному валу мотор-редуктора, при установленной номинальной мощности Pn, коэффициенте безопасности S, и расчетном сроке службы 10000 часов, с учетом КПД редуктора.
2 Номинальный крутящий момент редуктора Mn2 [Нм]
Номинальным крутящим моментом редуктора называется максимальный крутящий момент, на безопасную передачу которого рассчитан редуктор, исходя из следующих величин:
. коэффициент безопасности S=1
. срок службы 10000 часов.
Величины Mn2 рассчитываются в соответствии со следующими стандартами:
ISO DP 6336 для шестерен;
ISO 281 для подшипников.

3 Максимальный вращающий момент M2max [Нм]
Максимальным вращающим моментом называется наибольший крутящий момент, выдерживаемый редуктором в условиях статической или неоднородной нагрузки с частыми пусками и остановками (это величина понимается как мгновенная пиковая нагрузка при работе редуктора или пусковой крутящий момент под нагрузкой).
4 Необходимый крутящий момент Mr2 [Нм]
Значение крутящего момента, соответствующее необходимым требованиям потребителя. Данная величина всегда должна быть меньше или равна номинальному значению выходного крутящего момента Mn2 выбранного редуктора.
5 Расчетный крутящий момент M c2 [Нм]
Значение крутящего момента, которым необходимо руководствоваться при выборе редуктора с учетом требуемого крутящего момента Mr2 и эксплуатационного коэффициента fs, вычисляется по формуле:

Читайте также:  Сож для токарного станка своими руками

Мощность

1 Номинальная входная мощность Pn1 [кВт]
Значение данной величины, приведенное в таблицах выбора редукторов, соответствует допустимой входной мощности, передаваемой на входной вал редуктора при скорости n1, коэффициенте безопасности S=1 и расчетном сроке службы редуктора 10000 ч.

2 Выходная мощность P2 [кВт]
Полезная мощность, передаваемая на выходной вал редуктора, вычисляется по следующим формулам:

Значения динамического КПД редукторов указаны в таблице (A2)

Предельная термическая мощность Pt [кВт]

Данная величина равна предельному значению передаваемой редуктором механической мощности в условиях непрерывной работы при температуре окружающей среды 20°C без повреждения узлов и деталей редуктора. При температуре окружающей среды, отличной от 20°C, и прерывистом режиме работы значение Pt корректируется с учетом тепловых коэффициентов ft и коэффициентов скорости, приведенных в таблице (A1). Необходимо обеспечить выполнение следующего условия:

Относительная продолжительность включения (I)% равна процентному отношению времени работы под нагрузкой tf к сумме времени работы под нагрузкой и времени покоя tr:

Коэффициент полезного действия (КПД)

1 Динамический КПД [ηd]
Динамический КПД представляет собой отношение мощности, получаемой на выходном валу P2, к мощности, приложенной к входному валу P1.

Справочные значения КПД указаны в следующей таблице: (A2)

Передаточное число [ i ]

Характеристика, присущая каждому редуктору, равная отношению скорости вращения на входе n1 к скорости вращения на выходе n2:

Скорость вращения

1 Скорость на входе n1 [мин -1]
Скорость вращения, подведенная к входному валу редуктора. В случае прямого подсоединения к электродвигателю данное значение равно выходной скорости электродвигателя; в случае подсоединения через другие элементы привода для получения входной скорости редуктора скорость двигателя следует разделить на передаточное число подводящего привода. В этих случаях рекомендуется подводить к редуктору скорость вращения ниже 1400 об/мин. Не допускается превышение значений входной скорости редукторов, указанных в таблице.

2 Скорость на выходе n2 [мин-1]
Выходная скорость n2 зависит от входной скорости n1 и передаточного числа i; вычисляется по формуле:

Эксплуатационный коэффициент fs

Эксплуатационный коэффициент является количественным показателем тяжести предполагаемых условий эксплуатации редуктора с приблизительным учетом продолжительности ежедневного цикла работы, изменений нагрузки и возможных перегрузок, связанных с особенностями конкретных условий эксплуатации изделия. Приблизительные значения эксплуатационного коэффициента даны в таблице (A3) ниже:

Коэффициент безопасности [S]

Значение коэффициента равно отношению номинальной мощности редуктора к реальной мощности электродвигателя, подсоединенного к редуктору:

Классификация редукторов в зависимости от расположения осей входного и выходного валов в пространстве.

1. С параллельными осями входного и выходного валов 1. Горизонтальное; оси расположены в горизонтальной плоскости; оси расположены в вертикальной плоскости (с входным валом над или под выходным валом); оси расположены в наклонной плоскости 2. Вертикальное 2. С совпадающими осями входного и выходного валов (соосный) 1. Горизонтальное 2. Вертикальное 3. С пересекающимися осями входного и выходного валов 1. Горизонтальное 2. Горизонтальная ось входного вала и вертикальная ось выходного вала 3. Вертикальная ось входного вала и горизонтальная ось выходного вала 4. Со скрещивающимися осями входного и выходного валов 1. Горизонтальное (с входным валом над или под выходным валом) 2. Горизонтальная ось входного вала и вертикальная ось выходного вала 3. Вертикальная ось входного вала и горизонтальная ось выходного вала

Классификация редукторов в зависимости от способа крепления.

На приставных лапах или на плите (к потолку или стене):

Фланцем со стороны входного вала

Фланцем со стороны выходного вала

Фланцем со стороны входного и выходного валов

Насадкой

Конструктивные исполнения по способу монтажа.

Условные изображения и цифровые обозначения конструктивных исполнений редукторов и мотор-редукторов общемашиностроительного применения: (изделий) по способу монтажа установлены ГОСТ 30164-94.
В зависимости от конструкции редукторы и мотор-редукторы разбиты на следующие группы:

а) соосные;
б) с параллельными осями;
в) с пересекающимися осями;
г) со скрещивающимися осями.

К группе а) отнесены и изделия с параллельными осями, у которых концы входного и выходного валов направлены в противоположенные стороны, а их межосевое расстояние составляет не более 80мм.
К группам б) и в) отнесены также вариаторы и вариаторные приводы. Условные изображения и цифровые обозначения конструктивных исполнений по способу монтажа характеризуют конструктивные исполнения корпусов, а также расположение в пространстве поверхностей крепления валов или осей валов.

Условное обозначение изделий группы а) состоит из трех цифр:

Первая — конструктивное исполнение корпуса (1 – на лапах, 2 – с фланцем);
Вторая — расположение поверхности крепления (1 — пол, 2 – потолок, 3 – стена);
Третья – расположение конца выходного вала (1 – горизонтальный влево, 2 — горизонтальный вправо, 3 – вертикальный вниз, 4 — вертикальный верх).

Читайте также:  Einhell global euro 8 24

Условное обозначение изделий группы а) состоит из трех цифр:
первая — конструктивное исполнение корпуса (1 — на лапах; 2 — с фланцем); вторая — расположение поверхности крепления (1 — пол; 2 — потолок; 3 — стена); третья — расположение конца выходного вала (1 — горизонтальный влево; 2 — горизонтальный вправо; 3 — вертикальный вниз; 4 — вертикальный вверх).

Условное обозначение изделий групп б) и в) состоит из четырех цифр:
первая — конструктивное исполнение корпуса (1 — на лапах; 2 — с фланцем; 3 — навесное; 4 — насадное); вторая — взаимное расположение поверхности крепления и осей валов для группы б): 1 — параллельно осям валов; 2 — перпендикулярно осям валов; для группы в): 1 — параллельно осям валов; 2 — перпендикулярно оси выходного вала; 3 — перпендикулярно оси входного вала); третья — расположение поверхности крепления в пространстве (1 — пол; 2 — потолок; 3 — стена левая, передняя, задняя; 4 — стена правая, передняя, задняя);

четвертая — расположение валов в пространстве для группы б): 0 — валы горизонтальные в горизонтальной плоскости; 1 — валы горизонтальные в вертикальной плоскости; 2 — валы вертикальные; для группы в): 0 — валы горизонтальные; 1 — выходной вал вертикальный; 2 — входной вал вертикальный).
Условное обозначение изделий группы г) состоит из четырех цифр:
первая — конструктивное исполнение корпуса (1 — на лапах; 2 — с фланцем; 3 — навесное; 4 — насадное);
вторая — взаимное расположение поверхности крепления и осей валов (1 — параллельно осям валов, со стороны червяка; 2 — параллельно осям валов, со стороны колеса; 3, 4 — перпендикулярно оси колеса; 5, 6 — перпендикулярно оси червяка);
третья — расположение валов в пространстве (1 — валы горизонтальные; 2 — выходной вал вертикальный: 3 — входной вал вертикальный);
четвертая — взаимное расположение червячной пары в пространстве (0 — червяк под колесом; 1 — червяк над колесом: 2 — червяк справа от колеса; 3 — червяк слева от колеса).
Изделия навесного исполнения устанавливают полым выходным валом, а корпус фиксируют в одной точке от проворота реактивным моментом. Изделия насадного исполнения устанавливают полым выходным валом, а корпус крепят неподвижно в нескольких точках.
В мотор-редукторах на изображении конструктивного исполнения по способу монтажа должно быть дополнительное упрощенное изображение контура двигателя по ГОСТ 20373.
Примеры условных обозначений и изображений:
121 — соосный редуктор, конструктивное исполнение корпуса на лапах, крепление к потолку, валы горизонтальные, выходной вал слева (рис. 1, а);
2231 — редуктор с параллельными осями, исполнение корпуса с фланцем, поверхность крепления перпендикулярна осям валов, крепление к левой стене, валы горизонтальные в вертикальной плоскости (рис. 1, б);
3120 — редуктор с пересекающимися осями, исполнение корпуса навесное, поверхность крепления параллельна осям валов, крепление к потолку, валы горизонтальные (рис. 1, в);
4323 — редуктор со скрещивающимися осями, исполнение корпуса насадное, поверхность крепления перпендикулярна оси колеса, выходной вал вертикальный, червяк слева от колеса (рис. 1, г). Символом LLLL обозначена точка фиксации изделия от проворота реактивным моментом и крепление полого выходного вала на валу рабочей машины.

ВАРИАНТЫ СБОРКИ.

В соответствии с ГОСТ 20373-94 редукторы и мотор-редукторы выполняют по одному из стандартных вариантов сборки, которые отличаются по количеству, взаимному расположению, форме и размерам выходных концов валов. Условные изображения и обозначения вариантов сборки по ГОСТ 20373 являются составной частью условных обозначений редукторов и мотор-редукторов общемашиностроительного применения, предназначенных для привода машин, механизмов и оборудования. Стандарт не распространяется на соосные зубчатые редукторы и мотор-редукторы и является рекомендуемым для специальных. Условные изображения и цифровые обозначения вариантов сборки редукторов и мотор-редукторов характеризуют взаимное расположение выходных концов валов и их число.

Условные изображения и цифровые обозначения вариантов сборки первой ступени относительно второй червячных и цилиндрическо-червячных двухступенчатых редукторов и мотор-редукторов должны соответствовать приведенным в табл.

Ошибки при расчете и выборе редуктора могут привести к преждевременному выходу его из строя и, как следствие, в лучшем случае к финансовым потерям.

Поэтому работу по расчету и выбору редуктора необходимо доверять опытным специалистам-конструкторам, которые учтут все факторы от расположения редуктора в пространстве и условий работы до температуры нагрева его в процессе эксплуатации. Подтвердив это соответствующими расчетами, специалист обеспечит подбор оптимального редуктора под Ваш конкретный привод.

Практика показывает, что правильно подобранный редуктор обеспечивает срок службы не менее 7 лет — для червячных и 10-15 лет для цилиндрических редукторов.

Выбор любого редуктора осуществляется в три этапа:

1. Выбор типа редуктора

2. Выбор габарита (типоразмера) редуктора и его характеристик.

3. Проверочные расчеты

1. Выбор типа редуктора

1.1 Исходные данные:

Кинематическая схема привода с указанием всех механизмов подсоединяемых к редуктору, их пространственного расположения относительно друг друга с указанием мест крепления и способов монтажа редуктора.

1.2 Определение расположения осей валов редуктора в пространстве.

Цилиндрические редукторы:

Ось входного и выходного вала редуктора параллельны друг другу и лежат только в одной горизонтальной плоскости – горизонтальный цилиндрический редуктор.

Ось входного и выходного вала редуктора параллельны друг другу и лежат только в одной вертикальной плоскости – вертикальный цилиндрический редуктор.

Читайте также:  Как сделать лопасть для воблера

Ось входного и выходного вала редуктора может находиться в любом пространственном положении при этом эти оси лежат на одной прямой (совпадают) – соосный цилиндрический или планетарный редуктор.

Коническо-цилиндрические редукторы:

Ось входного и выходного вала редуктора перпендикулярны друг другу и лежат только в одной горизонтальной плоскости.

Червячные редукторы:

Ось входного и выходного вала редуктора может находиться в любом пространственном положении, при этом они скрещиваются под углом 90 градусов друг другу и не лежат в одной плоскости – одноступенчатый червячный редуктор.

Ось входного и выходного вала редуктора может находиться в любом пространственном положении, при этом они параллельны друг другу и не лежат в одной плоскости, либо они скрещиваются под углом 90 градусов друг другу и не лежат в одной плоскости – двухступенчатый редуктор.

1.3 Определение способа крепления, монтажного положения и варианта сборки редуктора.

Способ крепления редуктора и монтажное положение (крепление на фундамент или на ведомый вал приводного механизма) определяют по приведенным в каталоге техническим характеристикам для каждого редуктора индивидуально.

Вариант сборки определяют по приведенным в каталоге схемам. Схемы «Вариантов сборки» приведены в разделе «Обозначение редукторов».

1.4 Дополнительно при выборе типа редуктора могут учитываться следующие факторы

  • наиболее низкий — у червячных редукторов
  • наиболее высокий — у цилиндрических и конических редукторов

2) Коэффициент полезного действия

  • наиболее высокий — у планетарных и одноступенчатых цилиндрических редукторах
  • наиболее низкий — у червячных, особенно двухступенчатых

Червячные редукторы предпочтительно использовать в повторно-кратковременных режимах эксплуатации

3) Материалоемкость для одних и тех же значений крутящего момента на тихоходном валу

  • наиболее высокая — у конических
  • наиболее низкая — у планетарных одноступенчатых

4) Габариты при одинаковых передаточных числах и крутящих моментах:

  • наибольшие осевые — у соосных и планетарных
  • наибольшие в направлении перпендикулярном осям – у цилиндрических
  • наименьшие радиальные – к планетарных.

5) Относительная стоимость руб/(Нм) для одинаковых межосевых расстояний:

  • наиболее высокая — у конических
  • наиболее низкая – у планетарных

2. Выбор габарита (типоразмера) редуктора и его характеристик

2.1. Исходные данные

Кинематическая схема привода, содержащая следующие данные:

  • вид приводной машины (двигателя);
  • требуемый крутящий момент на выходном валу Ттреб, Нхм, либо мощность двигательной установки Ртреб, кВт;
  • частота вращения входного вала редуктора nвх, об/мин;
  • частота вращения выходного вала редуктора nвых, об/мин;
  • характер нагрузки (равномерная или неравномерная, реверсивная или нереверсивная, наличие и величина перегрузок, наличие толчков, ударов, вибраций);
  • требуемая длительность эксплуатации редуктора в часах;
  • средняя ежесуточная работа в часах;
  • количество включений в час;
  • продолжительность включений с нагрузкой, ПВ %;
  • условия окружающей среды (температура, условия отвода тепла);
  • продолжительность включений под нагрузкой;
  • радиальная консольная нагрузка, приложенная в середине посадочной части концов выходного вала F вых и входного вала F вх;

2.2. При выборе габарита редуктора производиться расчет следующих параметров:

1) Передаточное число

Наиболее экономичной является эксплуатация редуктора при частоте вращения на входе менее 1500 об/мин, а с целью более длительной безотказной работы редуктора рекомендуется применять частоту вращения входного вала менее 900 об/мин.

Передаточное число округляют в нужную сторону до ближайшего числа согласно таблицы 1.

По таблице отбираются типы редукторов удовлетворяющих заданному передаточному числу.

2) Расчетный крутящий момент на выходном валу редуктора

Ттреб — требуемый крутящий момент на выходном валу, Нхм (исходные данные, либо формула 3)

Креж – коэффициент режима работы

При известной мощности двигательной установки:

Ртреб — мощность двигательной установки, кВт

nвх — частота вращения входного вала редуктора (при условии что вал двигательной установки напрямую без дополнительной передачи передает вращение на входной вал редуктора), об/мин

U – передаточное число редуктора, формула 1

КПД — коэффициент полезного действия редуктора

Коэффициент режима работы определяется как произведение коэффициентов:

Для зубчатых редукторов:

Для червячных редукторов:

К1 – коэффициент типа и характеристик двигательной установки, таблица 2

К2 – коэффициент продолжительности работы таблица 3

К3 – коэффициент количества пусков таблица 4

КПВ – коэффициент продолжительности включений таблица 5

Крев – коэффициент реверсивности , при нереверсивной работе Крев=1,0 при реверсивной работе Крев=0,75

Кч – коэффициент, учитывающий расположение червячной пары в пространстве. При расположении червяка под колесом Кч = 1,0, при расположении над колесом Кч = 1,2. При расположении червяка сбоку колеса Кч = 1,1.

3) Расчетная радиальная консольная нагрузка на выходном валу редуктора

F вых — радиальная консольная нагрузка, приложенная в середине посадочной части концов выходного вала (исходные данные), Н

Креж — коэффициент режима работы (формула 4,5)

3. Параметры выбираемого редуктора должны удовлетворять следующим условиям:

Тном – номинальный крутящий момент на выходном валу редуктора, приводимый в данном каталоге в технических характеристиках для каждого редуктора, Нхм

Трасч — расчетный крутящий момент на выходном валу редуктора (формула 2), Нхм

Fном – номинальная консольная нагрузка в середине посадочной части концов выходного вала редуктора, приводимая в технических характеристиках для каждого редуктора, Н.

Fвых.расч — расчетная радиальная консольная нагрузка на выходном валу редуктора (формула 6), Н.

«>

Оцените статью
Добавить комментарий