- Импульсные блоки питания: как работает структурная схема и взаимодействуют ее части — краткое пояснение
- Схемы сетевых фильтров импульсных и высокочастотных помех: 4 типа конструкций
- Сетевой выпрямитель напряжения: самая популярная конструкция
- Преобразователь импульсного напряжения: объяснение простыми словами с поясняющими картинками
- Импульсный трансформатор: принцип работы одного импульса в 2 такта
- Однотактная схема импульсного блока питания: состав и принцип работы
- Двухтактная схема импульсного блока питания: 3 варианта исполнения
- 3 схемы силовых каскадов двухтактных ИБП
- Выходной выпрямитель: самое популярное устройство
- Схема стабилизации напряжения: как работает
- Схема адаптера и переделка
Силовая часть собрана по мостовой схеме на мощных IGBT транзисорах B1- B4 (на схеме отсутствует ЭМИ фильтр). D1-D4 — диодный мост. R6 и RS1 — схема плавного включения, обеспечивает постепенный заряд фильтрующего конденсатора С3, исключая бросок тока. С5, R7, R8 — схема запуска ШИМ контроллера. С2, R10 — демпфирующая цепь. LR1-LR2, D5-D8, R9, WR — регулировка выходного тока.
Список радиодеталей силового блока:
Предохранители
F1- 5A
Транзисторы IGBT
B1, B2, B3, B4 – G20N60
Диоды
D1, D2, D3, D6 – 6A10 ( 6A 1000V)
D7, D8, D9, D10 – 4148
Конденсаторы
C1 – 2,2uF 630V
C2 – 332 630V (3300pF, 3,3nF, 0,0033 uF )
C3 – 600uF 400V, электролитический
C4 – 220uF 400V, электролитический
C5 – 22uF 400V, электролитический
C6 – 104 (100nF, 0,1uF)
Резисторы
RB1, RB2, RB3, RB4 – 3,3K
R5 – 10K
R6 –100/10W
R7 – 10K/2W
R8 – 120K/2W
R9 – 150
R10 – 51/10W
RW – 510, подстроечный
Реле
RS1- 12V 10A
LR1, LR2 – трансформатор тока
ферритовое кольцо 20*12*6 2000НМ, вторичная обмотка LR2 — 100 витков провода 0,12- 0,15 мм2, первичная обмотка LR1— перемычка, пропущенная через кольцо.
PM1 Блок ШИМ контроллера собран на микосхемах TL494 и IR2181, способен управлять мощными IGBT или MOSFET транзисторами с током до 60А. С помощью этого блока возможно построение мощного блока питания по мостовой схеме от 1 до 3 кВт.
Список радиодеталей ШИМ контроллера:
Микросхемы
TL494
IR2181 – 2шт.
Диоды
UF 407 – 2шт.
Zener 18V
Конденсаторы
224 (200n, 0,22uF) – 3шт
103 (10n, 0,01uF) – 2шт.
102 (1000pF, 1n) – 1шт.
100uF*35V – 1шт.
100uF*16V – 1шт.
Резисторы
10 – 4шт.
51 – 1шт.
1К – 4шт.
2К – 5шт.
10К – 1шт
15К – 1шт.
82К – 2шт.
Вторичные цепи с однополярным питанием и силовой трансформатор
Силовой трансформатор изготовлен на сердечнике ЕЕ55 материал N87 . Первичная обмотка N1 — 0,35*6=35 витков, N2,N3 — 0,55*10=6+6 витков, N4-0,55=3 витка, N5 — 0,55=2 витка.
Дроссель L1 изготовлен на сердечнике ЕЕ55 материал N87 0,55*20=9 виков
Стабилизатор V1 — 12V, питание вентилятора и реле Rs1. Стабилизатор V2 — 18V, питание Шим контроллера. WR1 — регулировка выходного напряжения.
Вторичные цепи с двухполярным питанием и силовой трансформатор
Силовой трансформатор изготовлен на сердечнике ЕЕ55 материал N87 (при расчете программой Lite-CalcIT, размер сердечника: E 42/21/20 N87) . Первичная обмотка N1 — 0,35*6=35 витков, N2,N3 — 0,55*4=9+9 витков, N4-0,55=3 витка, N5 — 0,55=2 витка.
Дроссель L1а L1b изготовлен на сердечнике ЕЕ55 материал N87 0,55*10=9+9 виков (противоположное направление намотки).
Стабилизатор V1 — 12V, питание вентилятора и реле Rs1. Стабилизатор V2 — 18V, питание Шим контроллера. WR1 — регулировка выходного напряжения.
Печатная плата блока управления . >>>здесь
Домашний мастер часто сталкивается с поломками сложной бытовой техники из-за отказов ее электрической схемы. Не всегда удается сразу выполнить такой ремонт. Часто требуются знания про импульсные блоки питания, принципы работы их составных частей.
Такие работники популярны, всегда востребованы, заслуживают уважения. Однако не все так сложно в этом вопросе, как кажется на первый взгляд.
Я выделил 7 правил, по которым работает любой ИБП, постарался объяснить их простыми словами для новичков. А что получилось — оценивайте сами.
Блоки питания — это электротехнические устройства, которые изменяют характеристики промышленной электроэнергии до уровня параметров, необходимых для работы конечных механизмов.
Они подразделяются на трансформаторные и импульсные изделия.
Силовой трансформатор понижает входное напряжение и одновременно обеспечивает гальваническую развязку между электрической энергией первичной и вторичной цепи.
Трансформаторные модули тратят значительную часть мощности на электромагнитные преобразования и нагрев, имеют повышенные габариты, вес.
Импульсные блоки питания: как работает структурная схема и взаимодействуют ее части — краткое пояснение
За счет этого снижаются потери и общий вес всех элементов, но усложняется технология. Принципы работы импульсного блока питания помогает понять его структурная схема.
Показываю ее составные части прямоугольниками, связи стрелками, а форму выходного сигнала из каждого блока — мнемонической фигурой преобразованного напряжения (темно синий цвет сверху).
Сетевой фильтр пропускает через себя промышленную синусоиду. Одновременно он отделяет из нее все посторонние помехи.
Очищенная от помех синусоида поступает на выпрямитель со сглаживающим фильтром. Он превращает полученную гармонику в сигнал напряжения строго постоянной формы действующей величины.
Следующим этапом начинается работа инвертора. Он из постоянного стабилизированного сигнала формирует высокочастотные колебания уже не синусоидальной, а практически строго прямоугольной формы.
Преобразованная в подобный вид электрическая энергия поступает на силовой высокочастотный трансформатор, который, как и обычный аналоговый, видоизменяет ее на пониженное напряжение с увеличенным током.
После силового трансформатора наступает очередь работы выходного выпрямителя.
Заключительным звеном работает сглаживающий выходной фильтр. После него на блок управления бытового прибора поступает стабилизированное напряжение постоянной величины.
Качество работы импульсного блока поддерживается за счет создания в рабочем состоянии обратной связи, реализованной в блоке управления инвертора. Она компенсирует все посадки и броски напряжения, вызываемые колебаниями входной величины или коммутациями нагрузок.
Пример монтажа деталей показан на фотографии платы импульсного блока питания ниже.
Сетевой выпрямитель имеет в своем составе предохранитель на основе плавкой вставки, диодный мост, электромеханический фильтр, набор дросселей, конденсаторы развязки со статикой.
Накопительная емкость сглаживает пульсации.
Генератор инвертора на основе силового ключевого транзистора
в комплекте с импульсным трансформатором выдает напряжение на выходной
выпрямитель с диодами, конденсаторами и дросселями.
Оптопара в узле обратной связи обеспечивает оптическую развязку электрических сигналов.
Разберем все эти части подробнее.
Схемы сетевых фильтров импульсных и высокочастотных помех: 4 типа конструкций
Важно понимать, что импульсы высокой частоты играют двоякую роль:
- в/ч помехи могут приходить из бытовой сети в блок питания;
- импульсы высокочастотного тока генерируются встроенным преобразователем и выходят из него в домашнюю проводку.
Причины появления помех в бытовой сети:
- апериодические составляющие переходных процессов, возникающие от коммутации мощных нагрузок;
- работы близкорасположенных приборов с сильными электромагнитными полями, например, сварочных аппаратов, мощных тяговых электродвигателей, силовых трансформаторов;
- последствия погашенных импульсов атмосферных разрядов и других факторов, включая наложение высокочастотных гармоник.
Помехи ухудшают работу радиоэлектронной аппаратуры, мобильных устройств и цифровых гаджетов. Их необходимо подавлять и блокировать внутри конструкции импульсного блока питания.
Основу фильтра составляет дроссель, выполненный двумя обмотками на одном сердечнике.
Дроссели могут быть выполнены разными габаритами, намотаны толстой или тонкой проволокой на больших или маленьких сердечниках.
Начинающему мастеру достаточно запомнить простое правило: лучше работает фильтр с дросселем большого магнитопровода, увеличенным числом витков и поперечным сечением проволоки. (Принцип: чем больше — тем и лучше.)
Дроссель обладает индуктивным сопротивлением, которое резко ограничивает высокочастотный сигнал, протекающий по проводу фазы или нуля. В то же время оно не оказывает особого влияния на ток бытовой сети.
Работу дросселя эффективно дополняют емкостные сопротивления.
Конденсаторы подобраны так, что закорачивают ослабленные дросселем в/ч сигналы помех, направляя их на потенциал земли.
Принцип работы фильтра в/ч помех от проникновения на блок питания входных сигналов показан на картинке ниже.
Между потенциалами земли с нулем и фазой устанавливают Y конденсаторы. Их конструктивная особенность — они при пробое не способны создать внутреннее короткое замыкание и подать 220 вольт на корпус прибора.
Между цепями фазы и нуля ставят конденсаторы, способные выдерживать 400 вольт, а лучше — 630. Они обычно имеют форму параллепипеда.
Однако следует хорошо представлять, что ИБП в преобразователе напряжения сами выправляют сигнал и помехи им практически не мешают. Поэтому такая система актуальна для обычных аналоговых блоков со стабилизацией выходного сигнала.
У импульсного блока питания важно предотвратить выход в/ч помех в бытовую сеть. Эту возможность реализует другое решение.
Как видите, принцип тот же. Просто емкостные сопротивления всегда располагаются по пути движения помехи за дросселем.
Третья схема в/ч фильтра считается универсальной. Она объединила элементы первых двух. Y конденсаторы в ней просто работают с двух сторон каждого дросселя.
У самых дорогих и надежных устройств используется сложный фильтр с дополнительно подключенными дросселями и конденсаторами.
Сразу же показываю схему расположения фильтров на всех цепочках блока питания: входе и выходе.
Обратите внимание, что на кабель, выходящий из ИБП и подключаемый к электронному прибору, может быть дополнительно установлен ферритовый фильтр, состоящий из двух разъемных полуцилиндров или выполненный цельной конструкцией.
Примером его использования является импульсный блок питания ноутбука. Это уже четвертый вариант применения фильтра.
Сетевой выпрямитель напряжения: самая популярная конструкция
В ходе электрического преобразования форма синусоиды, состоящая из полуволн противоположных знаков, вначале меняется на сигнал положительного направления после диодной сборки, а затем эти пульсации сглаживаются до практически постоянной амплитудной величины 311 вольт.
Такой сетевой выпрямитель напряжения заложен в работу всех блоков питания.
Преобразователь импульсного напряжения: объяснение простыми словами с поясняющими картинками
Силовой ключ выполняется первичной обмоткой высокочастотного трансформатора. Для эффективной трансформации в/ч импульсов до 100 килогерц конструкцию магнитопровода делают из альсифера или ферритов.
На обмотку трансформатора от цепей управления через в/ч транзистор поступают импульсы сигналов в несколько десятков килогерц.
Прямоугольные импульсы тока подаются по времени, чередуются с паузами, обозначаются единицей (1) и нулем (0).
Продолжительность протекания импульса или его ширина в каждый момент низкочастотного синусоидального напряжения соответствует его амплитуде: чем она больше, тем шире ШИМ. И наоборот.
ШИМ контроллер отслеживает величину подключенной нагрузки на выходе импульсного блока питания. По ее значению он вырабатывает импульсы, кратковременно открывающие силовой транзистор.
Если подключенная к ИБП мощность начинает возрастать, то схема управления увеличивает длительность импульсов управления, а когда она снижается, то — уменьшает.
За счет работы этой конструкции производится стабилизация напряжения на выходе блока в строго определенном диапазоне.
Импульсный трансформатор: принцип работы одного импульса в 2 такта
Во время преобразования электрической энергии в магнитную и обратно в электрическую с пониженным напряжением обеспечивается гальваническое разделение первичных входных цепей с вторичной выходной схемой.
Каждый ШИМ импульс тока, поступающий при кратковременном открытии силового транзистора, протекает по замкнутой цепи первичной обмотки трансформатора.
Его энергия расходуется:
- вначале на намагничивание сердечника магнитопровода;
- затем на его размагничивание с протеканием тока по вторичной обмотке и дополнительной подзарядкой конденсатора.
По этому принципу каждый ШИМ импульс из первичной сети подзаряжает накопительный конденсатор.
Генераторы ИБП могут работать по простой однотактной или более сложной двухтактной технологии построения.
Однотактная схема импульсного блока питания: состав и принцип работы
На стороне 220 расположены: предохранитель, выпрямительный диодный мост, сглаживающий конденсатор, биполярный транзистор, цепочки колебательного контура и коллекторного тока, а также обмотки импульсного трансформатора.
Однотактная схема импульсного блока питания создается для передачи мощности 10÷50 ватт, не более. По ней изготавливают зарядные устройства мобильных телефонов, планшетов и других цифровых гаджетов.
В выходной цепочке трансформатора используется выпрямительный диод Д7. Он может быть включен в прямом направлении, как показано на картинке, или обратно, что важно учитывать.
При прямом включении импульсный трансформатор накапливает индуктивную энергию и передает ее в выходную цепь к подключенной нагрузке с задержкой по времени.
Если диод включен обратно, то трансформация энергии из первичной схемы во вторичную цепь происходит во время закрытого состояния транзистора.
Однотактная схема ИБП отмечается простотой конструкции, но большими амплитудами напряжения, приложенными к виткам первичной обмотки импульсного трансформатора.
Их защита осуществляется дополнительными цепочками из
резисторов R2÷R4 и конденсаторов С2, С3.
Двухтактная схема импульсного блока питания: 3 варианта исполнения
Более высокий КПД и пониженные потери мощности являются неоспоримыми преимуществами этих ИБП по сравнению с однотактными моделями.
Простейший вариант исполнения двухполупериодной методики показан на картинке.
Если в нее дополнительно подключить два диода и один сглаживающий конденсатор, то на этом же трансформаторе получается двухполярная схема.
Она распространена в усилителях мощности, работает по обратноходовому принципу. В ней через каждую емкость протекают меньшие токи, обеспечивающие повышенный ресурс конденсаторов при эксплуатации.
Прямоходовая схема блока питания имеет в своей конструкции дроссель, который выполняет функцию накопления энергии. Для этого два диода направляют поступающие импульсы ШИМ на его вход в одной полярности.
Дроссель этих устройств изготавливается большими габаритами и устанавливается отдельно внутри платы ИБП. Он дополняет работу накопительного конденсатора.
Это наглядно видно по верхней форме сигнала, показанного осциллограммой выпрямления одного и того же блока без дросселя и с ним.
Прямоходовая схема используется в мощных блоках питания, например, внутри компьютера.
В ней выпрямлением тока занимаются диоды Шоттки. Их применяют за счет:
- уменьшенного падения напряжения на прямом включении;
- и повышенного быстродействия во время обработки высокочастотных импульсов.
3 схемы силовых каскадов двухтактных ИБП
По порядку сложности их исполнения генераторы выполняют по:
- полумостовому;
- мостовому;
- или пушпульному принципу построения выходного каскада.
Полумостовая схема импульсного блока питания: обзор
Конденсаторы С1, С2 собраны последовательно емкостным делителем. На него и переходы коллектор-эмиттер транзисторов Т1, Т2 подается напряжение постоянного питания.
К средней точке емкостного делителя и транзисторов подключена первичная обмотка трансформатора Тр2. С ее вторичной обмотки снимается выходное напряжение генератора, которое пропорционально входному сигналу ТР1, трансформируемому на базы Т1 и Т2.
Полумостовая схема ИБП работает для нагрузок от нескольких ватт до киловатт. Ее недостатком является возможность повреждения элементов при перегрузках, что требует использования сложных защит.
Мостовая схема импульсного блока питания: краткое пояснение
Вместо емкостного делителя предыдущей технологии здесь работают транзисторы T3 и T4. Они попарно открываются совместно с Т1 и Т2: (пара Т1-Т4), (пара Т2-Т3).
Напряжение переходов эмиттер-коллектор у закрытых транзисторов не выше величины питающего напряжения, а на обмотке w1 ТР3 оно возрастает до значения U пит. За счет этого увеличивается величина КПД.
Мостовая схема сложна в наладке из-за трудностей с настройкой цепей управления транзисторов Т1÷Т4.
Пушпульная схема: важные особенности
Первичная обмотка выходного ТР2 имеет средний вывод, на который подается плюсовой потенциал источника питания, а его минус — на среднюю точку вторичной обмотки Т1.
Во время прохождения одного полупериода колебания работает один из транзисторов Т1 или Т2 и соответствующая ему часть полуобмотки трансформатора.
Здесь создается самый высокий КПД, малые пульсации и низкие помехи. Амплитудное значение импульсного напряжения на любой половине обмотки w1 ТР2 достигает величины U пит.
К напряжению перехода коллектор-эмиттер каждого транзистора добавляется ЭДС самоиндукции, и оно возрастает до 2U пит. Поэтому Т1 и Т2 надо подбирать на 600÷700 вольт.
Пушпульная схема ключевого каскада пользуется большей популярностью. Она применяется в наиболее мощных преобразователях.
Выходной выпрямитель: самое популярное устройство
Простейшая схема выпрямителя, состоящая из диода и накапливающего конденсатора, показана картинкой ниже.
Она может дорабатываться подключением дополнительных конденсаторов, дросселей, элементов фильтров.
Схема стабилизации напряжения: как работает
Самая примитивная схема стабилизации выходного напряжения создается на дополнительной обмотке импульсного трансформатора.
С нее снимается напряжение и подается для корректировки величины сигнала первичной обмотки.
Лучшая стабилизация создается за счет контроля выходного сигнала с вторичной обмотки и отделения его гальванической связи через оптопару.
В ней используется светодиод, через который проходит ток, пропорциональный значению выходного напряжения. Его свечение воспринимается фототранзистором, который посылает соответствующий электрический сигнал на схему управления генератора ключевого каскада.
Повысить качество стабилизации выходного напряжения позволяет последовательное дополнение к оптопаре стабилитрона, как показано на примере микросхемы TL431 на картинке ниже.
Для закрепления материала в памяти рекомендую посмотреть видеоролик владельца Паяльник TV, который хорошо объясняет информацию про импульсные блоки питания: принципы работы на примере конкретной модели.
Надеюсь, что моя статья поможет вам выполнить ремонт ИБП своими руками за 7 шагов, которые я изложил в другой статье.
Задавайте возникшие вопросы в разделе комментариев, высказывайте свое мнение. Его будет полезно знать другим людям.
Всем известно, что существует такая операция как предпродажная подготовка товара. Простое, но очень необходимое действие. По аналогии с ней уже давно применяю предэксплуатационную подготовку всех покупаемых товаров китайского производства. Всегда в этих изделиях имеется возможность доработки, причём замечу реально необходимой, которая является следствием экономии производителя на качественном материале отдельных его элементов или не установки их вообще. Позволю себе быть мнительным и выскажу предположение, что всё это не случайно, а является составляющим элементом политики производителя направленной в конечном итоге на уменьшение срока службы производимого товара, следствием чего является увеличение продаж. Приняв решение об активном использовании миниатюрного электромассажёра (конечно же, китайского производства) сразу же обратил внимание на его блок питания внешне похожий на зарядное устройство мобильного телефона да ещё и с надписью COURIER CHARGER – мобильное зарядное устройство. Имеющее OUTPUT в 5 вольт и 500 мА. Даже не убеждаясь в его исправности, разобрал и посмотрел содержимое.
Установленные на плате электронные компоненты и особенно стабилитрон на выходе свидетельствовали, что это действительно блок питания. К слову, отсутствие диодного моста позитивным моментом не считаю.
Подключённая нагрузка, в виде двух лампочек по 2,5 В последовательно, с токопотреблением в 150 мА, обнаружила на выходе 5,76 В. Прибор рассчитан на питание тремя батарейками АА – 4,5 В, полагаю допустимым и 5 В от адаптера, но прочее, в данном конкретном случае, явно ни к чему.
Поискам схемы в интернете предпочёл отрисовать в Sprint Layout, по сделанному предварительно фото, печатную плату с расположенными на ней электронными компонентами.
Схема адаптера и переделка
Изображение печатной платы дало возможность начертить существующую схему БП. Транзисторная оптопара CHY 1711, транзисторы С945, S13001 и другие компоненты не позволяли назвать схему примитивной, но с существующими номиналами одних компонентов и отсутствием других она меня не устраивала.
В новую схему был введён плавкий предохранитель на 160 мА, а вместо имеющегося выпрямителя диодный мост, состоящий из 4-х диодов 1N4007. Номинал стабилитрона VD3 управляющего оптроном изменён с 4V6 на 3V6, что должно снизить выходное напряжение до желаемого.
На плате имелось достаточное количество свободного места так, что осуществить планируемые изменения труда не составило. Вновь собранный блок питания имел на выходе напряжение практически 4,5 вольта.
И токоотдачу до 300 мА включительно.
В результате некоторое количество дополнительных электронных компонентов и время, отданное интересной работе, дали мне возможность иметь приличный блок питания, который надеюсь, прослужит верой и правдой длительное время. Отладкой БП занимался Babay.