/

Как запитать лазерный диод

Мечта о маленьком карманном лазере стала реальностью с появлением и развитием полупроводниковых лазерных диодов. В просторах интернета достаточно много статей о том, как можно сделать выжигающий лазер из привода для компакт дисков. Но не стоит ограничиваться только этой информацией.

Выбор лазерного диода:

Если вы задались серьёзной целью сделать лазер то просмотрите справочник и выберете подходящий по параметрам лазерный диод. Если нет у вас есть неисправный DVD RW привод — то вам придется раскошелится и купить лазерный светодиод. Причём в этом случае, вы можете в меру своих финансовых возможностей, подобрать лазер нужной вам мощности. А как с ним быть дальше? Рекомендую прочитать и прислушаться к нашей статье что бы не тратить время на сборку сомнительных схем подключения лазерного диода.

Классификация лазерных установок:

В лазерном пучке концентрируется высокая энергия и потому существует опасность повредить зрение при неосторожном обращении с лазерами. Существует классификация опасности лазерных установок в соответствии с EN60825-1 рисунок №1.

Рисунок №1 – Классификация опасности лазерных установок

При работе с лазерными диодами нужно СТРОГО СОБЛЮДАТЬ ПРАВИЛА ТЕХНИКИ БЕЗОПАСНОСТИ. Нельзя направлять луч лазера прямо в глаза, это может привести к полной или частичной потере зрения. Не давайте вашу лазерную установку детям, не оставляйте её в легкодоступных местах! Исключайте возможность не санкционированного (случайного) включения лазера, используйте ваше творение только в мирных целях. Одевайте защитные очки при настройке и работе с ним.

О лазерном диоде:

Как правило, лазерный диод это миниатюрное устройство с тремя (рисунок №2) или четырьмя ножками в зависимости от типа.

Рисунок № 2 – Внешний вид лазерного светодиода с тремя ножками

Почему три ножки? Дело в том что внутри корпуса находится кроме лазерного излучающего диода ещё и фотодиод рисунок №3.

Риснок №3 – Схема лазерного светодиода

Фотодиод предназначен для того чтобы управлять (регулировать или ограничивать) током лазера. Конструктивно это выглядит так: рисунок №4.

Маломощные лазерные диоды эксплуатируются с напряжениями в несколько вольт и силой тока в диапазоне примерно от 50 до 80 мА. Указанный в соответствующих паспортах на них (Datasheet). Например рабочий ток (50-60 мА) ни в коем случае нельзя превышать! Опасны также им­пульсные перегрузки. Поэтому при питании лазерного светодиода нужно принимать во внимание то, чтобы такие пики отсутствовали. Надежнее всего использо­вать в качестве источника питания для диода не блок питания, а батареи. Но это не всегда подходит – особенно если вы хотите сделать стационарную установку.

Итак, если вы желаете подключить ваш лазерный диод (ЛД) к не стабилизированному (простому) блоку питания рекомендую воспользоваться схемой рисунок №5:

Рисунок №5 – Схема подключения ЛД к нестабилизированному источнику питания

С1– 10 мкФ
С2 – 47 пФ
С3,С4 – 10 нФ
R1 – 10 К
R2 – 1,5 К
R3 – 33 Ом
VT1 – ВС548
VT2 –BD675
VD1 – Лазерный диод
VD2 – 3,3 В/ 1,3Вт
Благодаря такому подключению лазерного диода можно предотвратить его выход из строя. Падение напряжения на резисторе R2 открывает транзистор VT 1, он управляет током базы транзистора VT 2. В контуре регулирования ток фотодиода колеблется около 400 мкА. Конденсатор С4 устраняет импульсные помехи, а емкостной делитель напряжения, состоящий из конденсаторов С2 и СЗ, обеспечивает запуск процесса регулирования сразу при подаче напряжения питания.

Мой вариант лазера:

Я тоже попробовал сделать лазер из DVD RW привода и хочу сразу вас предупредить, что идея хорошая, но реализовать её достаточно сложно. Разбирать рабочий DVD RW привод это глупо, а в поломанных приводах, как правило, лазерный диод уже палёный и восстановлению не подлежит. Даже если вам всё же удалось вынуть рабочий лазерный диод, то будьте готовы к тому, что к нему необходима специальная собирающая линза, так как сам по себе лазерный диод светит не сфокусировано. А что б сформировать требуемое расхождение луча вам понадобиться хорошая оптика. Линзы от DVD RW привод не дают желаемый эффект. Я просто купил готовый лазерный модуль типа HLDPM12-655-5 (в корпусе с оптикой и защитой от переполюсовки), и подключил его к обыкновенному блоку питания.

Рисунок №6 – HLDPM12-655-5 внешний вид Рисунок №7 – HLDPM12-655-5 подключённый к блоку питания Рисунок №8 – свечение лазера

Мощность моего лазерного диода всего 6 мВт (для моих целей этого было достаточно) но если вам необходимо прожигать отверстия в листке бумаги, то придётся покупать гораздо более мощный лазерный диод, который соответственно стоит дороже.

P.S.: Я постарался наглядно показать и описать не хитрые советы. Надеюсь, что хоть что-то вам пригодятся. Но это далеко не всё что возможно выдумать, так что дерзайте, и штудируйте сайт https://bip-mip.com/

  1. Термолобзик своими рукамиДля фигурного выпиливания в легкоплавких листовых материалах, удобно применять так.
  2. Регулируемый блок питания на стабилизаторе напряжения LM317Начинающему радиолюбителю просто не обойтись без хотя бы простейшего блока.
  3. Лестница своими рукамиЕсли вам необходимо добраться до какого, то предмета весящего на.
  4. Тиристорный регулятор яркости настольной лампыНе смотря на то, что лампы накаливания вымирающий вид:).
  5. Рабочее место своими рукамиВ сельской местности рабочее место может быть размещено в сарае.
Читайте также:  При какой температуре можно обрабатывать дерево антисептиком

Сегодня во многих приборах бытового и любого другого плана используются лазерные диоды (полупроводники) для создания целенаправленного луча. И самым важным моментом в самостоятельной сборке лазерной установки является подключение диода.

Из этой статьи вы узнаете обо всем, что нужно для качественного подключения лазерного диода.

Особенности полупроводника и его подсоединения

От led диода лазерная модель отличается очень маленькой площадью кристалла. В связи с чем наблюдается значительная концентрация мощности, что приводит к кратковременному превышению значения тока в переходе. Из-за этого такой диод может легко перегореть. Поэтому, чтобы лазерный диод прослужил как можно дольше, необходима специальная схема – драйвер.

Обратите внимание! Любой диод лазерного типа необходимо питать стабилизированным током. Хоте некоторые разновидности, дающие красный свет, ведут себя достаточно стабильно, даже если имеют не стабильное питание.

Красный лазерный диод

Но, даже если используют драйвер, диод нельзя подключать к нему. Здесь необходим еще «датчик тока». В его роли часто выступает общий провод низкоомного резистора, который включается в разрыв между этими деталями. В результате схема имеет один существенный недостаток — минус питания оказывается «оторван» от минуса, имеющегося в питании схемы. Кроме этого данная схема имеет еще один минус — на токоизмерительном резисторе происходит потеря мощности.
Собираясь подключить лазерный диод, необходимо понимать, к какому драйверу его следует подключать.

Классификация драйверов

На данный момент существует два основных типа драйверов, которые можно подключить к нашему полупроводнику:

  • импульсный драйвер. Представляет собой частный случай преобразователя напряжения импульсного характера. Он может быть как понижающим, так и повышающим. У них входная мощность приблизительно равна выходной. При этом имеется незначительное преобразование энергии в тепло. Упрощенная схема импульсного драйвера имеет следующий вид;

Упрощенная схема импульсного драйвера

  • линейный драйвер. На такой драйвер схема обычно подает больше напряжения, чем требует полупроводник. Для его гашения необходим транзистор, который лишнюю энергию будет выделять с теплом. Такой драйвер имеет небольшой КПД, в связи с чем его используют крайне редко.

Обратите внимание! При использовании линейных микросхем-стабилизаторов интегрального плана при падении входного напряжения на диоде ток будет уменьшаться.

Схема линейного драйвера

В связи с тем, что питание любого лазерного диода может осуществляться через два разных типа драйверов, то схема подключения будет различаться.

Особенности соединения

Схема, которая будет использоваться для питания лазерного диода, может содержать в себе не только драйвер и «датчик тока», но и источник питания – аккумулятор или батарею.

Вариант схемы подключения

Обычно аккумулятор/батарея в таком случае должны иметь напряжение в 9 В. Кроме них в схему обязательно должны входить лазерный модуль и токоограничивающий резистор.

Обратите внимание! Чтобы не тратиться на диод, его можно извлечь из DVD привода. При этом это должен быть именно компьютерное устройство, а не стандартный проигрыватель.

Лазерный полупроводник имеет три вывода (ноги), два из которых размещены по бокам, а один – посредине. Средний выход следует подключать к минусовой клемме выбранного источника питания. Положительную клемму нужно подсоединять к левой или правой «ноге». Выбор левой или правой стороны зависит от производителя полупроводника. Поэтому нужно определить, какой именно вывод будет: «+» и «-». Для этого на полупроводник следует подать питание. Здесь отлично справятся две батарейки, каждая по 1,5 вольт, а также резистор в 5 Ом.
Минусовый вывод у источника питания следует подключить к центральному минусовому выводу, определенного у диода. При этом плюсовая сторона должна подсоединяться к каждой из двух оставшихся клемм полупроводника поочередно. Таким образом его можно подключать и к микроконтроллеру.
Питание для лазерного диода можно осуществить с помощью 2-3 пальчиковых батареек. Но при желании в схему можно включить и аккумулятор от мобильного телефона. В таком случае необходимо помнить, что понадобиться еще дополнительный ограничительный резистор на 20 Ом.

Подсоединение к сети 220 В

Полупроводник можно запитать от 220 В. Но здесь необходимо создать дополнительную защиту от высокочастотных всплесков напряжения.

Вариант схемы питания диода от сети в 220 В

Такая схема должна включать в себя следующие элементы:

  • стабилизатор напряжения;
  • токоограничивающий резистор
  • конденсатор;
  • лазерный диод.

Сопротивление и стабилизатор будут образовывать блок, который сможет препятствовать токовым выбросам. Для предотвращения всплесков напряжения необходим стабилитрон. Конденсатор будет препятствовать появлению высокочастотных всплесков. Если такая схема была правильно собрана, то стабильная работа полупроводника будет гарантирована.

Читайте также:  Термостат к56 схема подключения

Пошаговая инструкция подсоединения

Самым удобным в плане создания лазерной установки своими руками будет красный полупроводник, имеющий выходную мощность примерно в 200 милливатт.

Обратите внимание! Именно таким полупроводником оснащен любой компьютерный DVD-проигрыватель. Это значительно упрощает поиск источника света.

Подключение выглядит следующим образом:

  • для подключения необходимо использовать один полупроводник. Их обязательно нужно проверить на работоспособность (достаточно просто подключить к батарейке);
  • выбираем более яркую модель. При проверке инфракрасного светодиода (при взятии его из компьютерного проигрывателя), он будет светить слабым красным свечением. Помните, что его

ЗАПРЕЩАЕТСЯ направлять в глаза, иначе можно полностью лишиться зрения;

  • далее лазер устанавливаем на самодельный радиатор. Чтобы это сделать, нужно просверлить в алюминиевой пластине (толщина примерно 4 мм) отверстие с таким диаметром, чтобы диод входил в него достаточно туго;
  • между лазером и радиатором необходимо нанести небольшой слой термопласты;
  • далее берем проволочный керамический резистор, имеющий сопротивление 20 Ом с мощностью в 5 Вт и соблюдая полярность подключаем его к схеме. Через него нужно подключить лазер и источник питания (мобильный аккумулятор или батарейку);
  • сам лазер следует зашунтовать с помощью керамического конденсатора, имеющего любую емкость;
  • далее отворачивая устройство от себя, следует подключить его к сети питания. В результате должен включить красный луч.

Красный луч от самодельного устройства

После этого его можно сфокусировать при помощи двояковыпуклой линзы. Сфокусируйте его на несколько секунд в одной точке на бумаге, которая поглощает красный спектр. Лазер на ней оставит красный свет.
Как видите, получилось работающее устройство, которое подключено к сети в 220 В. Используя различные схемы и варианты подключения, можно создать разные приспособления, вплоть до карманной лазерной указки.

Заключение

Подключая лазерный диод, необходимо помнить о безопасном обращении с ним, а также знать нюансы, которые присутствуют в его работе. После этого останется только подобрать понравившуюся схему и подключить полупроводник. Главное помните, что все контакты должны быть хорошо запаяны, иначе деталь может перегореть в процессе работы.

Изначально лазеры представляли собой громоздкие конструкции, состоящие из множества сложных и хрупких узлов. С появлением полупроводниковых элементов размеры и возможности лазеров значительно изменились. Основу конструкции стал составлять лазерный диод, к которому требовалось лишь подвести соответствующее питание.

Получить лазерный луч стало возможно не только в научно-производственных, но и в бытовых условиях. В результате этих изменений появилось множество устройств, использующих лазер в прикладных целях. Областью применения стали:

  • техника;
  • медицина;
  • измерительные устройства;
  • в качестве декоративной подсветки.

Приведенный список не является исчерпывающим, поскольку разработки новых устройств и аппаратуры с использованием подобных технологий ведутся постоянно. Рассмотрим особенности конструкции и принцип функционирования лазерного диода.

Принцип работы и особенности конструкции

Принцип работы лазерного диода основан на эффекте рекомбинации фотонов при прохождении p-n перехода. Если организовать достаточно продолжительное расположение электрона и дырки в непосредственной близости друг от друга, выделяется энергия, представленная фотоном. Подобный процесс, запущенный в стабильном режиме, вызовет появление постоянного свечения.

Основным элементом лазерного диода является полупроводниковый кристалл малой толщины с легированными слоями, образующими p и n области. При подаче напряжения на анод начинается активное выделение фотонов, что внешне определяется как устойчивое свечение.

Полупроводниковая пластинка (кристалл) имеет большую площадь по сравнению с толщиной. Фотон, проходя через нее, многократно отразится от верхнего и нижнего слоев, каждый раз вызывая образование новых фотонов. Этот процесс позволяет получить стабильный пучок света, который остается только сфокусировать с помощью линзы.

Важно! Приведенное описание несколько упрощено, но принцип действия элемента передает вполне достоверно. На практике используются разные конструкции, с помощью которых производители пытались избавиться от различных нежелательных эффектов, усилить световой пучок и снизить потери мощности на нагрев или на преодоление сопротивления материала.

Разновидности

Вариантов конструкции лазерных диодов довольно много. Они отличаются друг от друга расположением p-n переходов, конфигурацией полупроводникового элемента и прочими особенностями. Существуют следующие виды:

  • диод с p-n гомоструктурой. Одна из первых конструкций, которая сегодня практически не встречается. Нуждается в подаче высокой начальной мощности и прерывании входного сигнала для исключения перегрева;
  • с двойной гетероструктурой. Представляют собой кристалл малой толщины, заключенный между двух дополнительных слоев, усиливающих поток фотонов и расширяющих активную область;
  • с квантовыми ямами. Они образованы благодаря уменьшению среднего слоя элементов с двойной гетероструктурой. Возникают квантовые ямы с разными энергетическими уровнями, которые играют роль барьера при p-n переходе, способного к выделению фотонов;
  • гетероструктурные элементы с раздельным удержанием. Большинство лазерных диодов изготовлены по этой технологии. Ее особенностью является нанесение дополнительных слоев на тонкий центральный кристалл, результатом чего становится эффективное формирование и концентрация светового пучка;
  • с распределением обратной связи. В области p-n перехода делается специальная насечка, обеспечивающая создание дифракционной решетки. Это позволяет стабилизировать длину волны, способствуя получению более устойчивого светового луча. Используются в сфере телекоммуникаций, а также в оптических устройствах разного типа;
  • VCSEL. Это лазер, относящийся к элементам поверхностного излучения. Оснащен вертикальным резонатором, благодаря которому направление луча изменяется — если у остальных видов кристаллов свет движется параллельно граням, то в данной конструкции он излучается в перпендикулярном направлении. Существует еще одна модификация такого элемента — VECSEL. Он обладает практически аналогичной конфигурацией, только с внешним резонатором.
Читайте также:  Рецепты от юлии меняйловой

Современные разновидности лазеров демонстрируют высокие эксплуатационные качества, но производители не прекращают разработки новых, более совершенных моделей и конструкций.

Излучение с какой длиной волны может производить лазерный диод

Единицей измерения длины волны лазерного диода является нанометр (нм). С изменением длины волны меняется цвет светового луча, что позволяет изготавливать лазеры с разным цветом пучка (в светотехнике часто используются многоцветные конструкции). Наиболее распространенные лазеры имеют следующие длины волны:

  • 650 нм (красный луч). Чаще всего применяется в дисководах, лазерных указках малого радиуса действия, в лазерных строительных уровнях и т.п. луч красного цвета воспринимается как довольно слабый, тусклый, но это только кажущееся ощущение. При увеличении мощности такого луча до 200 мВт можно резать плотную бумагу;
  • 532 нм (зеленый луч). Устройства, излучающие поток такого типа. Отличаются хрупкостью и чувствительностью к перепадам температуры. До недавнего времени они стоили значительно дороже других видов лазеров. В то же время, зеленый луч лучше всего воспринимается человеческими органами зрения, что позволяет применять его в строительных лазерах. Даже в солнечную погоду зеленый луч хорошо различается на поверхностях, в отличие от красного, более тусклого потока. Примечательно, что в силу особенностей конструкции вместе с зеленым лучом такие устройства излучают и инфракрасный, что создает определенную опасность для человека. Поэтому устройства мощнее 5 мВт промышленностью не выпускаются;
  • 405 нм (фиолетовый луч). Невооруженным глазом воспринимается слабо, что вызывает у человека ощущение маломощности потока. На деле ситуация прямо противоположна — луч обладает большой мощностью и интенсивностью, способен нанести органам зрения серьезные травмы;
  • 780 нм (инфракрасный луч). Опасен для человека своей невидимостью, совмещенной с мощным воздействием на органы зрения;
  • 1000 нм. Это также инфракрасный луч, который используется в промышленных лазерах для резки листовых материалов разного типа.

Внимание! Выбирая лазерный диод того или иного цвета, важно понимать, что это устройство самостоятельное, имеющее весьма мало общего со светодиодной осветительной техникой. У них разные цели и специфика использования, поэтому критериями выбора станут совершенно другие соображения.

Если для светодиодов важны яркость и цветовая температура, то для лазера главным моментом будет мощность и длина световой волны. Поэтому и подход к выбору этих устройств должен быть своим для каждого вида.

Как подключить

Особенностью лазерного диода является высокая потребность в стабилизированном напряжении питания. В момент перехода на кристалле наблюдается кратковременное увеличение мощности из-за малой площади, увеличивающей концентрацию энергии в данной точке. Это делает необходимым использование специального стабилизатора — драйвера.

Кроме того, напрямую к драйверу элемент тоже нельзя подключать — необходимо использовать токоизмерительный резистор, который включается в разрыв между лазером и драйвером. При этом исчезает электрическое соединение минуса питания с общим минусом схемы. Дополнительным недостатком является неизбежная потеря мощности на резисторе.

Источником тока для лазера могут служить разные устройства:

  • батарейка;
  • аккумулятор;
  • сетевое напряжение 220 В через специальный блок питания.

Два первых варианта способны обеспечить достаточно стабильное напряжение питания, но оно постоянно уменьшается, что также недопустимо. Если используется блок питания стандартного типа, ситуация несколько улучшается, хотя в этом случае нужна качественная защита от пробоя или выхода блока из строя.

При таком подключении используют дополнительные схемы защиты и стабилизаторы, устраняющие всплески и помехи от сетевых скачков. Использование обычного диодного мостика в данном случае не подходит, так как через стандартные выпрямители проходит масса паразитных колебаний и помех.

Драйвер для лазерного диода

Существует две основные конструкции драйверов для лазерного диода:

  • импульсный. Это одна из разновидностей импульсного преобразователя напряжения. Способен работать как на понижение, так и на повышение выходного напряжения относительно входного значения. Мощность на входе приближается к показателям на выходе, разница между ними образована некоторыми потерями на нагрев проводников;
  • линейный. Как правило, он получает от схемы большее напряжение, чем номинал полупроводника. Разницу обычно компенсируют с помощью транзистора, который излишки энергии отдает в виде тепла. КПД линейных драйверов невысок, что является причиной ограниченного применения.

Важно! Для каждого вида драйверов используется и собственная схема подключения, учитывающая специфику самого драйвера, источника питания и токоограничивающего резистора.

Основные выводы

Лазерные диоды широко используются в разных областях техники и в качестве декоративных установок, светотехнических устройств. В быту их знают довольно ограниченно — как лазерные указки, целеуказатели, строительные уровни и прочие устройства. Особенности конструкции и возможности этих элементов находятся в стадии изучения и разработки. Специалисты считают, что использование лазеров пока недостаточно широко, но перспективы у них весьма высоки. В своих комментариях вы можете высказать собственные мысли о конструкции и свойствах лазерных диодов.

Оцените статью
Добавить комментарий