/

Дифференциальный пробник для осциллографа своими руками

При отладке и ремонте электронного оборудования иногда возникает потребность увидеть форму сигнала U(t) между двумя узлами схемы, ни один из которых не подключен к общему проводу. Это требуется при анализе кодовых последовательностей интерфейсов RS-485 и CAN, контроле сигналов на балансных входах и выходах звукоусилительной аппаратуры, оценке работы верхнего плеча силовых мостовых инверторов и т.п. Использовать в таких случаях обычный осциллограф затруднительно, т.к. один из выводов его входа должен быть подключен к общему проводу отлаживаемого устройства.

Решить описанную проблему позволяет дифференциальный пробник (ДП), представляющий собой инструментальный усилитель, выход которого подключается к входу осциллографа, а дифференциальные входы могут быть подключены к любым точкам отлаживаемого устройства. Работать с осциллографом, к входу которого подключен ДП, так же просто и удобно, как измерять напряжение вольтметром.

Особенно полезен ДП при работе с устройствами, имеющими непосредственную связь с электрической сетью 220/380 В. Корпус осциллографа по правилам электробезопасности должен быть заземлён. Это создаёт предпосылки для коротких замыканий, если по ошибке подключить к участку схемы, находящемуся под фазным напряжением, щуп осциллографа, связанный с его корпусом. Использование ДП полностью устраняет указанную опасность.

Большинство современных осциллографов – двухканальные. Использование двухканального ДП, подключенного к входам обеих каналов осциллографа, позволяет измерять временные соотношения и сдвиг фазы между двумя сигналами, не заботясь о задержке, вносимой ДП.

Многие фирмы, изготавливающие осциллографы, предлагают ДП в качестве опции, приобретаемой за дополнительную плату. Параметры этих ДП весьма высоки, но и цены зачастую превышают стоимость бюджетного ЦЗО.

Предлагается самодельный двухканальный ДП, отличающийся от «фирменных» более узкой полосой пропускания, составляющей 0 – 800 кГц. Стоимость комплектующих для двухканального варианта ДП не превышает 1000 руб, для одноканального – 700 руб, что примерно в 10 раз дешевле самых доступных ДП, имеющихся на рынке.

Внешний вид самодельного ДП представлен на фотографии.

Схема электрическая принципиальная ДП представлена на рисунке.

Каналы А и Б отличаются только нумерацией выводов используемых микросхем. Рассмотрим работу канала А.

Основным элементом, определяющим все параметры ДП, является инструментальный усилитель AD622AN. Он включен по стандартной схеме, рекомендованной изготовителем. Выключатель SA1 позволяет выбрать коэффициент усиления – 1 (SA1 разомкнут) или 10 (SA1 замкнут). Совместно с входным делителем на 100, собранным на резисторах R1…R4, R7, R9, это обеспечивает для ДП два коэффициента передачи 1:10 или 1:100. Конденсаторы С1…С6 обеспечивают частотную компенсацию делителя. Последовательное соединение резисторов и конденсаторов, образующих делитель, используется для повышения электрической прочности. Резисторы R5 и R6, совместно с защитными элементами, входящими в состав микросхемы DA1, повышают защищённость входа ДП при исследовании малых сигналов – когда делитель не используется. Подстроечный резистор R8 служит для балансировки входа ДП.

На микросхемах DA2.1, DA3.1, DA3.2 собрано устройство, сигнализирующее о возможном ограничении сигнала. Если напряжение на выходе DA1 окажется больше +10 В или меньше –10В, то компаратор DA3.1 или DA3.2 переключится и его выходной транзистор откроется. Чтобы светодиод HL2 светился и в том, и в другом случаях, выходы этих компараторов объединены в «монтажное ИЛИ». Амплитудные детекторы сигнализатора имеют соотношение T заряда / Т разряда примерно 1/400, по этому он корректно реагирует на импульсные сигналы с большой скважностью.

Источник питания ДП должен обеспечивать стабилизированное напряжение +/- 15В при токе 15 mA. Я использую простейший трансформаторный блок питания на микросхемах LM7815 и LM7915, схему которого не привожу в силу её банальности.

Конструкция и детали

ДП собран на макетной плате размером 87 х 56, которая помещена в стандартный металлический корпус G0473 фирмы «Gainta».

Возле выводов питания усилителей AD622AN следует расположить блокирующие конденсаторы. Провода, идущие к выключателям SA1 и SA2, не следует делать длинными – их полезно попарно перевить. В целом усилители AD622AN работают весьма устойчиво, склонности к генерации не обнаруживают, по этому никаких особых требований к расположению их «обвязки» нет.

Элементы входных делителей R1…R4, R20… R23, С1…С4, С9…С12 помещены в небольшие пластмассовые корпуса размером 45х30х12.

Каждый канал ДП настраивается под свой делитель, по этому следует нанести на них маркировку «Канал А» и «Канал Б». Кабель длиной 50 см, соединяющий делители с разъёмами XS1 и XS2, представляет собой витую пару из проводов МГТФ 0,2, которую следует поместить в термоусадочную трубку или в тонкий кембрик, а затем в экранирующую оплётку, поверх которой также следует одеть кембрик или трубку из силикона. Лучше всего, конечно, использовать готовый 2-х жильный микрофонный кабель, если таковой имеется. Входные клипсы подключены к делителям с помощью отрезков провода МГТФ 0,2 длиной по 30 см. Экспериментально проверено, что ни переменное напряжение 600 В 50 Гц ни постоянное напряжение 1000 В не вызывает пробоя изоляции щупов, а также других элементов делителей.

Резисторы R1…R4, R7, R9, R10, R20… R23, R26, R28 и R29 следует использовать однопроцентные – С2-23, MF-25 и т.п. Подстроечные резисторы R8 и R27 – многооборотные – СП5-3, СП5-14 или 3266 BOWRNS.

Читайте также:  Чему равен косинус фи в электротехнике

Если ДП будет изготавливаться в одноканальном варианте, то в качестве DA2 и DA3 следует использовать микросхемы TL081 и LM393 соответственно.

Налаживание

К входам ДП следует подключить штатные входные делители. Выходы ДП подключить к входам каналов «Y» осциллографа с помощью 2-х кабелей BNC — BNC. Установить в обеих каналах ДП коэффициент передачи 1:10. Заземлить все входные клипсы ДП, кроме входа «+» канала А, т.е. подключить их к общему проводу (корпусу) ДП. Подать на вход «+» канала А прямоугольные импульсы частотой 1 кГц с выхода калибратора осциллографа.

Подстраивая конденсаторы C1 и С2 добиться неискажённой передачи фронтов прямоугольных импульсов. При этом следует стремиться к тому, чтобы ёмкость C1 и C2 были примерно равными. Затем следует заземлить вход «+» канала А и подать тот же сигнал на вход «-» канала А — настроить частотную компенсацию его делителя. Ту же процедуру следует проделать с входами канала Б.

Для балансировки входов ДП требуется звуковой генератор, способный выдать синусоидальный сигнал амплитудой в несколько десятков вольт. При его отсутствии вполне можно использовать сетевое напряжение 220В. Предполагается, что сделанные Вами делители выдерживают такое напряжение и Вы в этом уже убедились.

Устанавливаем коэффициент передачи в обеих каналах ДП 1:100. Подключаем оба входа канала А (вход «+» и вход «-») к фазному проводу 220В, а общий провод ДП (корпус) к нулевому проводу – не перепутайте. Вращая ось подстроечного резистора R8 добиваемся минимально возможной амплитуды сигнала на экране осциллографа. У меня получилось от пика до пика меньше 1 mВ. Проделываем аналогичные процедуры с каналом Б. На этом наладка ДП закончена.

Опыт использования ДП

Как только самодельный ДП заработал мне, конечно, захотелось поставить какой-нибудь эффектный опыт с его участием. Я собрал мультивибратор на КМОП микросхеме 561-й серии и «подвесил» его к фазному проводу сети 220 вольт. Получилась вот такая схема.

Мультивибратор вырабатывает «полезный сигнал», который благодаря делителю R2, R3 имеет амплитуду около 1 В. С помощью ДП попытаемся разглядеть этот сигнал на фоне синфазной помехи с напряжением питающей сети (двойной размах более 600 В). Задача усложняется тем, что источником помехи является реальная городская электросеть, напряжение в которой сильно отличается от синусоидального и содержит вполне ощутимые высокочастотные составляющие. Вот, что я увидел на экране осциллографа.

По моим оценкам сигнал довольно чистый, т.е. ДП успешно справился со своей задачей.

Эксплуатация ДП показала, что он работает вполне надёжно, но перед проведением ответственных измерений всё же следует проверять и, при необходимости, корректировать балансировку. Видимо это связано с невысокой временной стабильностью резисторов, использованных в делителях.

В заключении хочу посоветовать всем, кто захочет повторить эту конструкцию, прочитать фирменные руководящие материалы по применению микросхемы AD622. В них содержатся полезные сведения о допустимых уровнях синфазной и дифференциальной составляющей входного сигнала, зависимости коэффициента ослабления синфазного сигнала (КОСС или CMR) и максимального размаха выходного сигнала от частоты и т.д. Незнание этих «тонкостей» может привести к серьёзным погрешностям в оценке результатов измерения или даже к повреждению ДП.

15 янв 2012

01:28 pm — Дешевый дифференциальный щуп к осциллографу.

Продающиеся дифференциальные щупы к осциллографу стоят от 5 тысяч рублей.
Они нужны что бы просматривать два независимых сигнала на одном осциллографе.
Для большинства случаев их свойства слишком хорошие: полоса пропускания больше 20 МГц, хотя многие осциллографы даже такой сигнал показать правильно не смогут.
Поэтому я себе сделал щуп на микросхемах lm318, он без искажений пропускает сигнал до 100 кГц, что достаточно для ремонта большинства импульсных БП, а если вместо осциллографа используется звуковая плата компьютера, то большего не надо в любом случае, ибо она пропускает только до 200кГц:)
Стоимость всех деталей около 100 рублей, хотя я точно не считал.

Схема щупа.

При желании щуп можно улучшить:
-добавить балансировку, сейчас может быть сдвиг приведенный ко входу равным 1В, что для сигналов в больше 100В несущественно;
-добавить фильтр низкой частоты, что бы подавлять выброс ЛАХ на частотах около 1МГц, вызванной широкой пропускания и задержкой распространения сигнала LM318.
Теоретически, можно обойтись одним ОУ или широкополосным инструментальным усилителем, но здесь будут мешать емкостные связи между электродами щупов, от которых сложно избавиться.

Если нужна полоса пропускания несколько МГц, то в этой схеме надо заменить LM318 на AD818 и убрать конденсаторы по 10пФ, которые нужны LM318 для подавления возбуждения.
Только тогда цена щупа будет больше 700 рублей, ибо AD818 стоит 120р, а LM318 только 15.

Два активных делителя подключенных к наконечникам щупа можно выполнить по схеме предложенной И. Нечаевым в журнале Радио.

Такая схема имеет смысл только с м/с аналогичными AD812: токовой обратной связью. С микросхемами аналогичными LM318 или AD818 лучше моя схема, ибо у инвертирующего усилителя лучше частотные свойства, чем у неинвертирующего.
Сделать дифференциальный усилитель на AD812 не получиться, ибо инвертирующий вход AD812 имеет низкое сопротивление.

Comments:

From: Dmitriy Eremenko
Date: 13, Август 2016 10:16 pm
Читайте также:  Как отрегулировать зазор ножницы ручные электрические шлицевые
From: zepete
Date: 14, Август 2016 12:45 pm
From: zepete
Date: 14, Август 2016 02:56 pm
From: zepete
Date: 14, Август 2016 04:00 pm
From: Dmitriy Eremenko
Date: 14, Август 2016 05:23 pm
From: zepete
Date: 14, Август 2016 08:58 pm
From: Dmitriy Eremenko
Date: 15, Август 2016 04:41 pm
From: zepete
Date: 15, Август 2016 07:39 pm

Щуп собран на отрезке фольгированного стеклотестолита и помещен в металлическую трубку, выполняющую роль экрана. Чтобы не вызывать аварийных ситуаций, когда и если щуп падает на включенное испытуемое устройство, трубка покрыта термоусадкой. Без покрытия заготовка выглядит вот так:

Щуп в разобранном виде:

Конструкции могут быть разными. Просто нужно учитывать некоторые вещи:

  • Если выполняете щуп без делителя, т.е. он не содержит в себе больших сопротивлений и переключателей, т.е. элементов подверженных электромагнитным наводкам, то целесообразно экранированный провод щупа протягивать до самой иглы. В этом случае дополнительная экранировка элементов вам не понадобится и щуп можно выполнять из любого диэлектрика. Например использовать один из щупов для тестера.
  • Если в щупе выполнен делитель, то когда вы берете его в руки, вы неизбежно будете увеличивать наводки и помехи. Т.е. потребуется экранировка элементов делителя.

В моем случае соединение трубки с экраном (точнее с обратной стороной стеклотестолита) выполнено припаиванием пружинки на тектолит, которая и создает контакт между экраном и платой щупа.

В качестве иглы использовал «Папу» от разъема типа ШР. Но ее можно выполнить и из любого другого подходящего стержня. Разъем от ШР удобен тем, что его «Маму» можно впаять в зажим, который можно будет при необходимости надевать на щуп.

Подбор провода

Отдельного упоминания заслуживает подбор провода. Правильный провод выглядит так:

Миниджек 3,5 мм расположен рядом для масштаба

Правильный провод представляет из себя более-менее обычный экранированный провод, с одним существенным отличием – центральная жила у него одна. Очень тонкая и выполнена из стальной проволоки, а то и проволоки с высоким удельным сопротивлением. Почему именно так поясню немного позже.

Читайте также:  Рого копытная мука применение

Такой провод не сильно распространен и найти его достаточно непросто. В принципе, если вы не работаете с высокими частотами порядка десятка мегагерц, особой разницы, использовав обычный экранированный провод, вы можете и не ощутить. Встречал мнение, что на частотах ниже 3-5 МГц выбор провода не критичен. Ни подтвердить, ни опровергнуть не могу – нет практики на частотах выше 1 МГц. В каких случаях это может сказываться тоже скажу позже.

Самодельные осциллографы нечасто имеют полосу пропускания в несколько мегагерц, поэтому используйте тот провод, который найдете. Просто стремитесь подобрать такой, у которого центральные жилы потоньше и их поменьше. Встречал мнение, что центральная жила должна быть потолще, но это явно из серии «вредных советов». Малое сопротивление проводу осциллографа без надобности. Там токи в наноамперах.

И важно понимать, чем ниже собственная емкость изготовленного щупа, тем лучше. Это связано с тем, что когда вы подключаете щуп к исследуемому устройству, вы тем самым подключаете дополнительную емкость.

Если подключаете напрямую на выход логического элемента либо в ИБП, т.е. к достаточно мощному источнику сигнала, имеющему достаточно малое собственное сопротивление, то все будет отображаться нормально. Но если в цепи есть значительные сопротивления, то емкость щупа будет сильно искажать форму сигнала, т.к. будет заряжаться через это сопротивление. А это означает, что вы уже не будете уверены в достоверности осциллограммы. Т.е. чем ниже собственная емкость щупа, тем шире диапазон возможных применений вашего осциллографа.

Принципиальные схемы щупов

Собственно схема щупа, которую я применил, предельно проста:

Это делитель на 10 для осциллографа с входным сопротивлением 1 мегом. Сопротивление лучше составить из нескольких, соединенных последовательно. Переключатель просто замыкает напрямую добавочное сопротивление. А подстроечный конденсатор позволяет согласовать щуп с конкретным прибором.

Пожалуй вот более правильная схема, которую стоило бы рекомендовать:

Она явно лучше по допустимому напряжению, так как пробивное напряжение резисторов и конденсаторов СМД обычно принимают за 100 вольт. Встречал утверждения, что они выдерживают и 200-250 вольт. Не проверял. Но если вы исследуете достаточно высоковольтные цепи, стоит применить именно такую схему.

Я ее никогда не делал, рекомендаций по настройке (подбору конденсаторов С2, С3, С4) дать не могу.

Немного обещанной теории

Емкость прямо пропорциональна площади проводников и обратно пропорциональна расстоянию между ними. Там еще есть коэффициент, но для нас это не важно сейчас.

Имеем два проводника. Центральная жила и экран провода. Расстояние между ними определяется диаметром провода. Площадь экрана сильно снизить не получится. Да и не надо. Остается снижать ПЛОЩАДЬ ПОВЕРХНОСТИ ЦЕНТРАЛЬНОЙ ЖИЛЫ.

Т.е. снижать ее диаметр насколько это технически целесообразно без потери механической прочности.

Ну а чтобы повысить эту самую прочность при уменьшении диаметра надо выбрать материал попрочнее.

Провод можно представить так:

Распределенная емкость по длине провода. Ну а чем больше будет удельное сопротивление материала центральной жилы, тем меньшее влияние соседние участки (соседние емкости) будут оказывать друг на друга. Поэтому целесообразен провод с высоким удельным сопротивлением. По этой же самой причине нецелесообразно делать провод щупа слишком длинным.

Разъемы рассматривать не буду. Лишь скажу, что оптимальным для осциллографа считаю разъемы BNC. Они чаще всего и применяются. Миниджек, аудиоразъем я бы применять не рекомендовал (хотя сам применяю, в силу того, что не использую осциллограф в цепях со значительными напряжениями). Он опасен. Дернули провод при проведении исследований цепей с хорошим напряжением. Что происходит далее? А далее миниджек, скользя по гнезду, может вызвать замыкание. И даже если в силу разных причин ничего не произошло, на самом миниджеке будет присутствовать это напряжение. А если он упадет к вам на колени? А там открытый центральный контакт и земля рядом.

Лето, жарко, любите работать в трусах? Выбирайте BNC (не реклама). BNC тем и хорош. Его не выдернешь просто так. А даже если и случилось – он закрытый. Ничего опасного произойти не должно, то что в трусах, не пострадает))

Дополнительную информацию можно почерпнуть из цикла статей Входные узлы самодельных осциллографов. Так, теорией поутомлялись, теперь

Щуп № 2

Он хорош тем, что его можно вставить так:

Или вот так, ему безразлично, он свободно крутится.

Устроен он примерно так:

Единственное, что на нем еще будет сделано. Отверстие для выхода провода земли из щупа будет залито каплей термоклея, чтобы сложнее было вырвать его при случайном рывке и провод будет зафиксирован в рукоятке отрезком спички, заточенным под пологий клин.

Чтобы не оборвать и не открутить центральную жилу. Кстати это самый простой способ «лечить» дешевые китайские щупы для тестера, чтобы провод не отламывался от наконечника.

На что стоит обратить внимание: Экран доходит почти до самого наконечника. Не должно быть под пальцами значительного по площади открытого участка центральной жилы, иначе вы будете любоваться наводками с рук на дисплее ослика.

Специально для сайта Радиосхемы — Тришин А.О. Г. Комсомольск-на Амуре. Август 2018 г.

Обсудить статью САМОДЕЛЬНЫЙ ЩУП ДЛЯ ОСЦИЛЛОГРАФА

GSM прослушка — схема отличного жучка, переделанного из обычного недорогого мобильника.

Оцените статью
Добавить комментарий