Что характеризует температурный коэффициент сопротивления

Электрическое сопротивление проводника в общем случае зависит от материала проводника, от его длины и от поперечного сечения, или более кратко — от удельного сопротивления и от геометрических размеров проводника. Данная зависимость общеизвестна и выражается формулой:

Известен каждому и закон Ома для однородного участка электрической цепи, из которого видно, что ток тем меньше, чем сопротивление выше. Таким образом, если сопротивление проводника постоянно, то с ростом приложенного напряжения ток должен бы линейно расти. Но в реальности это не так. Сопротивление проводников не постоянно.

За примерами далеко ходить не надо. Если к регулируемому блоку питания (с вольтметром и амперметром) подключить лампочку, и постепенно повышать напряжение на ней, доводя до номинала, то легко заметить, что ток растет не линейно: с приближением напряжения к номиналу лампы, ток через ее спираль растет все медленнее, причем лампочка светится все ярче.

Нет такого, что с увеличением вдвое приложенного к спирали напряжения, вдвое возрос и ток. Закон Ома как-будто не выполняется. На самом деле закон Ома выполняется, и точно, просто сопротивление нити накала лампы непостоянно, оно зависит температуры.

Вспомним, с чем связана высокая электрическая проводимость металлов. Она связана с наличием в металлах большого количества носителей заряда — составных частей тока — электронов проводимости. Это электроны, образующиеся из валентных электронов атомов металла, которые для всего проводника являются общими, они не принадлежат каждый отдельному атому.

Под действием приложенного к проводнику электрического поля, свободные электроны проводимости переходят из хаотичного в более-менее упорядоченное движение — образуется электрический ток. Но электроны на своем пути встречают препятствия, неоднородности ионной решетки, такие как дефекты решетки, неоднородная структура, вызванные ее тепловыми колебаниями.

Электроны взаимодействуют с ионами, теряют импульс, их энергия передается ионам решетки, переходит в колебания ионов решетки, и хаос теплового движения самих электронов усиливается, от того проводник и нагревается при прохождении по нему тока.

В диэлектриках, полупроводниках, электролитах, газах, неполярных жидкостях — причина сопротивления может быть иной, однако закон Ома, очевидно, не остается постоянно линейным.

Читайте также:  Транзистор кт 819 технические характеристики

Таким образом, для металлов, рост температуры приводит к еще большему возрастанию тепловых колебаний кристаллической решетки, и сопротивление движению электронов проводимости возрастает. Это видно по эксперименту с лампой: яркость свечения увеличилась, но ток возрос слабее. То есть изменение температуры повлияло на сопротивление нити накаливания лампы.

В итоге становится ясно, что сопротивление металлических проводников зависит почти линейно от температуры. А если принять во внимание, что при нагревании геометрические размеры проводника меняются слабо, то и удельное электрическое сопротивление почти линейно зависит от температуры. Зависимости эти можно выразить формулами:

Обратим внимание на коэффициенты. Пусть при 0°C сопротивление проводника равно R0, тогда при температуре t°C оно примет значение R(t), и относительное изменение сопротивления будет равно α*t°C. Вот этот коэффициент пропорциональности α и называется температурным коэффициентом сопротивления . Он характеризует зависимость электрического сопротивления вещества от его текущей температуры.

Данный коэффициент численно равен относительному изменению электрического сопротивления проводника при изменении его температуры на 1К (на один градус Кельвина, что равноценно изменению температуры на один градус Цельсия).

Для металлов ТКС (температурный коэффициент сопротивления α) хоть и относительно мал, но всегда больше нуля, ведь при прохождении тока электроны тем чаще сталкиваются с ионами кристаллической решетки, чем выше температура, то есть чем выше тепловое хаотичное их движение и чем выше их скорость. Сталкиваясь в хаотичном движении с ионами решетки, электроны металла теряют энергию, что мы и видим в результате — сопротивление при нагревании проводника возрастает. Данное явление используется технически в термометрах сопротивления.

Итак, температурный коэффициент сопротивления α характеризует зависимость электрического сопротивления вещества от температуры и измеряется в 1/К — кельвин в степени -1. Величину с обратным знаком называют температурным коэффициентом проводимости.

Что касается чистых полупроводников, то для них ТКС отрицателен, то есть сопротивление снижается с ростом температуры, это связано с тем, что с ростом температуры все больше электронов переходят в зону проводимости, растет при этом и концентрация дырок. Этот же механизм свойственен для жидких неполярных и твердых диэлектриков.

Читайте также:  Комбинезон для промышленного альпинизма

Полярные жидкости свое сопротивление резко уменьшают с ростом температуры из-за снижения вязкости и роста диссоциации. Это свойство применяется для защиты электронных ламп от разрушительного действия больших пусковых токов.

У сплавов, легированных полупроводников, газов и электролитов тепловая зависимость сопротивления более сложна чем у чистых металлов. Сплавы с очень малым ТКС, такие как манганин и константан, применяют в электроизмерительных приборах.

температурный коэффициент удельного электрического сопротивления проводникового материала — Отношение производной удельного электрического сопротивления проводникового материала по температуре к этому сопротивлению. [ГОСТ 22265 76] Тематики материалы проводниковые … Справочник технического переводчика

Температурный коэффициент удельного электрического сопротивления проводникового материала — 29. Температурный коэффициент удельного электрического сопротивления проводникового материала Отношение производной удельного электрического сопротивления проводникового материала по температуре к этому сопротивлению Источник: ГОСТ 22265 76:… … Словарь-справочник терминов нормативно-технической документации

ГОСТ 6651-2009: Государственная система обеспечения единства измерений. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний — Терминология ГОСТ 6651 2009: Государственная система обеспечения единства измерений. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний оригинал документа: 3.18 время термической реакции … Словарь-справочник терминов нормативно-технической документации

ГОСТ Р 8.625-2006: Государственная система обеспечения единства измерений. Термометры сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний — Терминология ГОСТ Р 8.625 2006: Государственная система обеспечения единства измерений. Термометры сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний оригинал документа: 3.18 время термической реакции : Время … Словарь-справочник терминов нормативно-технической документации

Термометр сопротивления — Условное графическое обозначение термометра сопротивления Термометр сопротивления электронный прибор, предназначенный для измерения температуры и основанный на зависимости электрического сопротивления … Википедия

Термометр сопротивления — прибор для измерения температуры (См. Температура), принцип действия которого основан на изменении электрического сопротивления чистых металлов, сплавов и полупроводников с температурой (на увеличении сопротивления R с повышением… … Большая советская энциклопедия

Читайте также:  Дизайн ванной в стиле минимализм фото

Алюминий — (Aluminum) Сплавы и производство алюминия, общая характеристика Al Физические и химические свойства алюминия, получение и нахождение в природе Al, применение алюминия Содержание Содержание Раздел 1. Название и история открытия . Раздел 2. Общая… … Энциклопедия инвестора

Тепловой расходомер — Тепловой расходомер расходомер, в котором для измерения скорости потока жидкости или газа используется эффект переноса тепла от нагретого тела подвижной средой. Различают калориметрические и термоанемометрические расходомеры. Содержание 1… … Википедия

Алюминий — 13 Магний ← Алюминий → Кремний B ↑ Al ↓ Ga … Википедия

Железо — (латинское Ferrum) Fe, химический элемент VIII группы периодической системы Менделеева; атомный номер 26, атомная масса 55,847; блестящий серебристо белый металл. Элемент в природе состоит из четырёх стабильных изотопов: 54Fe (5,84%),… … Большая советская энциклопедия

В современном мире электронная техника развивается семимильными шагами. Каждый день появляется что-то новое, и это не только небольшие улучшения уже существующих моделей, но и результаты применения инновационных технологий, позволяющих в разы улучшить характеристики.

Не отстает от электронной техники и приборостроительная отрасль – ведь чтобы разработать и выпустить на рынок новые устройства, их необходимо тщательно протестировать, как на этапе проектирования и разработки, так и на этапе производства. Появляются новая измерительная техника и новые методы измерения, а, следовательно – новые термины и понятия.

Для тех, кто часто сталкивается с непонятными сокращениями, аббревиатурами и терминами и хотел бы глубже понимать их значения, и предназначена эта рубрика.

Температурный коэффициент электрического сопротивления – величина, равная относительному изменению электрического сопротивления участка электрической цепи или удельного сопротивления вещества при изменении температуры на единицу.

Где R- сопротивление вещества при температуре Т.

Температурный коэффициент сопротивления характеризует зависимость электрического сопротивления от температуры и измеряется в кельвинах в минус первой степени (K −1 ).

Понравилась статья? Поделить с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock detector